iPXE
efx_bitfield.h
Go to the documentation of this file.
1 /****************************************************************************
2  *
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2017 Solarflare Communications Inc.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 of the
10  * License, or any later version.
11  *
12  * You can also choose to distribute this program under the terms of
13  * the Unmodified Binary Distribution Licence (as given in the file
14  * COPYING.UBDL), provided that you have satisfied its requirements.
15  */
16 
17 #ifndef EFX_BITFIELD_H
18 #define EFX_BITFIELD_H
19 
20 FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
21 
22 #include <byteswap.h>
23 
24 /** \file efx_bitfield.h
25  * Efx bitfield access
26  *
27  * Efx NICs make extensive use of bitfields up to 128 bits
28  * wide. Since there is no native 128-bit datatype on most systems,
29  * and since 64-bit datatypes are inefficient on 32-bit systems and
30  * vice versa, we wrap accesses in a way that uses the most efficient
31  * datatype.
32  *
33  * The NICs are PCI devices and therefore little-endian. Since most
34  * of the quantities that we deal with are DMAed to/from host memory,
35  * we define our datatypes (efx_oword_t, efx_qword_t and
36  * efx_dword_t) to be little-endian.
37  */
38 
39 /* Lowest bit numbers and widths */
40 #define EFX_DUMMY_FIELD_LBN 0
41 #define EFX_DUMMY_FIELD_WIDTH 0
42 #define EFX_WORD_0_LBN 0
43 #define EFX_WORD_0_WIDTH 16
44 #define EFX_WORD_1_LBN 16
45 #define EFX_WORD_1_WIDTH 16
46 #define EFX_DWORD_0_LBN 0
47 #define EFX_DWORD_0_WIDTH 32
48 #define EFX_DWORD_1_LBN 32
49 #define EFX_DWORD_1_WIDTH 32
50 #define EFX_DWORD_2_LBN 64
51 #define EFX_DWORD_2_WIDTH 32
52 #define EFX_DWORD_3_LBN 96
53 #define EFX_DWORD_3_WIDTH 32
54 #define EFX_QWORD_0_LBN 0
55 #define EFX_QWORD_0_WIDTH 64
56 
57 /* Specified attribute (e.g. LBN) of the specified field */
58 #define EFX_VAL(field, attribute) field ## _ ## attribute
59 /* Low bit number of the specified field */
60 #define EFX_LOW_BIT(field) EFX_VAL(field, LBN)
61 /* Bit width of the specified field */
62 #define EFX_WIDTH(field) EFX_VAL(field, WIDTH)
63 /* High bit number of the specified field */
64 #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1)
65 /* Mask equal in width to the specified field.
66  *
67  * For example, a field with width 5 would have a mask of 0x1f.
68  *
69  * The maximum width mask that can be generated is 64 bits.
70  */
71 #define EFX_MASK64(width) \
72  ((width) == 64 ? ~((u64) 0) : \
73  (((((u64) 1) << (width))) - 1))
74 
75 /* Mask equal in width to the specified field.
76  *
77  * For example, a field with width 5 would have a mask of 0x1f.
78  *
79  * The maximum width mask that can be generated is 32 bits. Use
80  * EFX_MASK64 for higher width fields.
81  */
82 #define EFX_MASK32(width) \
83  ((width) == 32 ? ~((u32) 0) : \
84  (((((u32) 1) << (width))) - 1))
85 
86 /** A doubleword (4 byte) datatype - little-endian in HW */
87 typedef union efx_dword {
88  __le32 u32[1];
89 } efx_dword_t;
90 
91 /** A quadword (8 byte) datatype - little-endian in HW */
92 typedef union efx_qword {
93  __le64 u64[1];
94  __le32 u32[2];
96 } efx_qword_t;
97 
98 /** An octword (eight-word, so 16 byte) datatype - little-endian in HW */
99 typedef union efx_oword {
104 } efx_oword_t;
105 
106 /* Format string and value expanders for printk */
107 #define EFX_DWORD_FMT "%08x"
108 #define EFX_QWORD_FMT "%08x:%08x"
109 #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x"
110 #define EFX_DWORD_VAL(dword) \
111  ((unsigned int) le32_to_cpu((dword).u32[0]))
112 #define EFX_QWORD_VAL(qword) \
113  ((unsigned int) le32_to_cpu((qword).u32[1])), \
114  ((unsigned int) le32_to_cpu((qword).u32[0]))
115 #define EFX_OWORD_VAL(oword) \
116  ((unsigned int) le32_to_cpu((oword).u32[3])), \
117  ((unsigned int) le32_to_cpu((oword).u32[2])), \
118  ((unsigned int) le32_to_cpu((oword).u32[1])), \
119  ((unsigned int) le32_to_cpu((oword).u32[0]))
120 
121 /*
122  * Extract bit field portion [low,high) from the native-endian element
123  * which contains bits [min,max).
124  *
125  * For example, suppose "element" represents the high 32 bits of a
126  * 64-bit value, and we wish to extract the bits belonging to the bit
127  * field occupying bits 28-45 of this 64-bit value.
128  *
129  * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give
130  *
131  * ( element ) << 4
132  *
133  * The result will contain the relevant bits filled in in the range
134  * [0,high-low), with garbage in bits [high-low+1,...).
135  */
136 #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \
137  ((low) > (max) || (high) < (min) ? 0 : \
138  (low) > (min) ? \
139  (native_element) >> ((low) - (min)) : \
140  (native_element) << ((min) - (low)))
141 
142 /*
143  * Extract bit field portion [low,high) from the 64-bit little-endian
144  * element which contains bits [min,max)
145  */
146 #define EFX_EXTRACT64(element, min, max, low, high) \
147  EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high)
148 
149 /*
150  * Extract bit field portion [low,high) from the 32-bit little-endian
151  * element which contains bits [min,max)
152  */
153 #define EFX_EXTRACT32(element, min, max, low, high) \
154  EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high)
155 
156 #define EFX_EXTRACT_OWORD64(oword, low, high) \
157  ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \
158  EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \
159  EFX_MASK64((high) + 1 - (low)))
160 
161 #define EFX_EXTRACT_QWORD64(qword, low, high) \
162  (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \
163  EFX_MASK64((high) + 1 - (low)))
164 
165 #define EFX_EXTRACT_OWORD32(oword, low, high) \
166  ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \
167  EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \
168  EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \
169  EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \
170  EFX_MASK32((high) + 1 - (low)))
171 
172 #define EFX_EXTRACT_QWORD32(qword, low, high) \
173  ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \
174  EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \
175  EFX_MASK32((high) + 1 - (low)))
176 
177 #define EFX_EXTRACT_DWORD(dword, low, high) \
178  (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \
179  EFX_MASK32((high) + 1 - (low)))
180 
181 #define EFX_OWORD_FIELD64(oword, field) \
182  EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \
183  EFX_HIGH_BIT(field))
184 
185 #define EFX_QWORD_FIELD64(qword, field) \
186  EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \
187  EFX_HIGH_BIT(field))
188 
189 #define EFX_OWORD_FIELD32(oword, field) \
190  EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \
191  EFX_HIGH_BIT(field))
192 
193 #define EFX_QWORD_FIELD32(qword, field) \
194  EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \
195  EFX_HIGH_BIT(field))
196 
197 #define EFX_DWORD_FIELD(dword, field) \
198  EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \
199  EFX_HIGH_BIT(field))
200 
201 #define EFX_OWORD_IS_ZERO64(oword) \
202  (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0)
203 
204 #define EFX_QWORD_IS_ZERO64(qword) \
205  (((qword).u64[0]) == (__force __le64) 0)
206 
207 #define EFX_OWORD_IS_ZERO32(oword) \
208  (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \
209  == (__force __le32) 0)
210 
211 #define EFX_QWORD_IS_ZERO32(qword) \
212  (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0)
213 
214 #define EFX_DWORD_IS_ZERO(dword) \
215  (((dword).u32[0]) == (__force __le32) 0)
216 
217 #define EFX_OWORD_IS_ALL_ONES64(oword) \
218  (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0))
219 
220 #define EFX_QWORD_IS_ALL_ONES64(qword) \
221  ((qword).u64[0] == ~((__force __le64) 0))
222 
223 #define EFX_OWORD_IS_ALL_ONES32(oword) \
224  (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \
225  == ~((__force __le32) 0))
226 
227 #define EFX_QWORD_IS_ALL_ONES32(qword) \
228  (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0))
229 
230 #define EFX_DWORD_IS_ALL_ONES(dword) \
231  ((dword).u32[0] == ~((__force __le32) 0))
232 
233 #if BITS_PER_LONG == 64
234 #define EFX_OWORD_FIELD EFX_OWORD_FIELD64
235 #define EFX_QWORD_FIELD EFX_QWORD_FIELD64
236 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64
237 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64
238 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64
239 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64
240 #else
241 #define EFX_OWORD_FIELD EFX_OWORD_FIELD32
242 #define EFX_QWORD_FIELD EFX_QWORD_FIELD32
243 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32
244 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32
245 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32
246 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32
247 #endif
248 
249 /*
250  * Construct bit field portion
251  *
252  * Creates the portion of the bit field [low,high) that lies within
253  * the range [min,max).
254  */
255 #define EFX_INSERT_NATIVE64(min, max, low, high, value) \
256  (((low > max) || (high < min)) ? 0 : \
257  ((low > min) ? \
258  (((u64) (value)) << (low - min)) : \
259  (((u64) (value)) >> (min - low))))
260 
261 #define EFX_INSERT_NATIVE32(min, max, low, high, value) \
262  (((low > max) || (high < min)) ? 0 : \
263  ((low > min) ? \
264  (((u32) (value)) << (low - min)) : \
265  (((u32) (value)) >> (min - low))))
266 
267 #define EFX_INSERT_NATIVE(min, max, low, high, value) \
268  ((((max - min) >= 32) || ((high - low) >= 32)) ? \
269  EFX_INSERT_NATIVE64(min, max, low, high, value) : \
270  EFX_INSERT_NATIVE32(min, max, low, high, value))
271 
272 /*
273  * Construct bit field portion
274  *
275  * Creates the portion of the named bit field that lies within the
276  * range [min,max).
277  */
278 #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \
279  EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \
280  EFX_HIGH_BIT(field), value)
281 
282 /*
283  * Construct bit field
284  *
285  * Creates the portion of the named bit fields that lie within the
286  * range [min,max).
287  */
288 #define EFX_INSERT_FIELDS_NATIVE(min, max, \
289  field1, value1, \
290  field2, value2, \
291  field3, value3, \
292  field4, value4, \
293  field5, value5, \
294  field6, value6, \
295  field7, value7, \
296  field8, value8, \
297  field9, value9, \
298  field10, value10) \
299  (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \
300  EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \
301  EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \
302  EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \
303  EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \
304  EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \
305  EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \
306  EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \
307  EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \
308  EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10)))
309 
310 #define EFX_INSERT_FIELDS64(...) \
311  cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
312 
313 #define EFX_INSERT_FIELDS32(...) \
314  cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
315 
316 #define EFX_POPULATE_OWORD64(oword, ...) do { \
317  (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
318  (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \
319  } while (0)
320 
321 #define EFX_POPULATE_QWORD64(qword, ...) do { \
322  (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
323  } while (0)
324 
325 #define EFX_POPULATE_OWORD32(oword, ...) do { \
326  (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
327  (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
328  (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \
329  (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \
330  } while (0)
331 
332 #define EFX_POPULATE_QWORD32(qword, ...) do { \
333  (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
334  (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
335  } while (0)
336 
337 #define EFX_POPULATE_DWORD(dword, ...) do { \
338  (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
339  } while (0)
340 
341 #if BITS_PER_LONG == 64
342 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64
343 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64
344 #else
345 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32
346 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32
347 #endif
348 
349 /* Populate an octword field with various numbers of arguments */
350 #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD
351 #define EFX_POPULATE_OWORD_9(oword, ...) \
352  EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
353 #define EFX_POPULATE_OWORD_8(oword, ...) \
354  EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
355 #define EFX_POPULATE_OWORD_7(oword, ...) \
356  EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
357 #define EFX_POPULATE_OWORD_6(oword, ...) \
358  EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
359 #define EFX_POPULATE_OWORD_5(oword, ...) \
360  EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
361 #define EFX_POPULATE_OWORD_4(oword, ...) \
362  EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
363 #define EFX_POPULATE_OWORD_3(oword, ...) \
364  EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
365 #define EFX_POPULATE_OWORD_2(oword, ...) \
366  EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
367 #define EFX_POPULATE_OWORD_1(oword, ...) \
368  EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
369 #define EFX_ZERO_OWORD(oword) \
370  EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0)
371 #define EFX_SET_OWORD(oword) \
372  EFX_POPULATE_OWORD_4(oword, \
373  EFX_DWORD_0, 0xffffffff, \
374  EFX_DWORD_1, 0xffffffff, \
375  EFX_DWORD_2, 0xffffffff, \
376  EFX_DWORD_3, 0xffffffff)
377 
378 /* Populate a quadword field with various numbers of arguments */
379 #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD
380 #define EFX_POPULATE_QWORD_9(qword, ...) \
381  EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
382 #define EFX_POPULATE_QWORD_8(qword, ...) \
383  EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
384 #define EFX_POPULATE_QWORD_7(qword, ...) \
385  EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
386 #define EFX_POPULATE_QWORD_6(qword, ...) \
387  EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
388 #define EFX_POPULATE_QWORD_5(qword, ...) \
389  EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
390 #define EFX_POPULATE_QWORD_4(qword, ...) \
391  EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
392 #define EFX_POPULATE_QWORD_3(qword, ...) \
393  EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
394 #define EFX_POPULATE_QWORD_2(qword, ...) \
395  EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
396 #define EFX_POPULATE_QWORD_1(qword, ...) \
397  EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
398 #define EFX_ZERO_QWORD(qword) \
399  EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0)
400 #define EFX_SET_QWORD(qword) \
401  EFX_POPULATE_QWORD_2(qword, \
402  EFX_DWORD_0, 0xffffffff, \
403  EFX_DWORD_1, 0xffffffff)
404 
405 /* Populate a dword field with various numbers of arguments */
406 #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD
407 #define EFX_POPULATE_DWORD_9(dword, ...) \
408  EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
409 #define EFX_POPULATE_DWORD_8(dword, ...) \
410  EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
411 #define EFX_POPULATE_DWORD_7(dword, ...) \
412  EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
413 #define EFX_POPULATE_DWORD_6(dword, ...) \
414  EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
415 #define EFX_POPULATE_DWORD_5(dword, ...) \
416  EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
417 #define EFX_POPULATE_DWORD_4(dword, ...) \
418  EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
419 #define EFX_POPULATE_DWORD_3(dword, ...) \
420  EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
421 #define EFX_POPULATE_DWORD_2(dword, ...) \
422  EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
423 #define EFX_POPULATE_DWORD_1(dword, ...) \
424  EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
425 #define EFX_ZERO_DWORD(dword) \
426  EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0)
427 #define EFX_SET_DWORD(dword) \
428  EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff)
429 
430 /*
431  * Modify a named field within an already-populated structure. Used
432  * for read-modify-write operations.
433  *
434  */
435 #define EFX_INVERT_OWORD(oword) do { \
436  (oword).u64[0] = ~((oword).u64[0]); \
437  (oword).u64[1] = ~((oword).u64[1]); \
438  } while (0)
439 
440 #define EFX_AND_OWORD(oword, from, mask) \
441  do { \
442  (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \
443  (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \
444  } while (0)
445 
446 #define EFX_AND_QWORD(qword, from, mask) \
447  (qword).u64[0] = (from).u64[0] & (mask).u64[0]
448 
449 #define EFX_OR_OWORD(oword, from, mask) \
450  do { \
451  (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \
452  (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \
453  } while (0)
454 
455 #define EFX_INSERT64(min, max, low, high, value) \
456  cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value))
457 
458 #define EFX_INSERT32(min, max, low, high, value) \
459  cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value))
460 
461 #define EFX_INPLACE_MASK64(min, max, low, high) \
462  EFX_INSERT64(min, max, low, high, EFX_MASK64((high) + 1 - (low)))
463 
464 #define EFX_INPLACE_MASK32(min, max, low, high) \
465  EFX_INSERT32(min, max, low, high, EFX_MASK32((high) + 1 - (low)))
466 
467 #define EFX_SET_OWORD64(oword, low, high, value) do { \
468  (oword).u64[0] = (((oword).u64[0] \
469  & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
470  | EFX_INSERT64(0, 63, low, high, value)); \
471  (oword).u64[1] = (((oword).u64[1] \
472  & ~EFX_INPLACE_MASK64(64, 127, low, high)) \
473  | EFX_INSERT64(64, 127, low, high, value)); \
474  } while (0)
475 
476 #define EFX_SET_QWORD64(qword, low, high, value) do { \
477  (qword).u64[0] = (((qword).u64[0] \
478  & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
479  | EFX_INSERT64(0, 63, low, high, value)); \
480  } while (0)
481 
482 #define EFX_SET_OWORD32(oword, low, high, value) do { \
483  (oword).u32[0] = (((oword).u32[0] \
484  & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
485  | EFX_INSERT32(0, 31, low, high, value)); \
486  (oword).u32[1] = (((oword).u32[1] \
487  & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
488  | EFX_INSERT32(32, 63, low, high, value)); \
489  (oword).u32[2] = (((oword).u32[2] \
490  & ~EFX_INPLACE_MASK32(64, 95, low, high)) \
491  | EFX_INSERT32(64, 95, low, high, value)); \
492  (oword).u32[3] = (((oword).u32[3] \
493  & ~EFX_INPLACE_MASK32(96, 127, low, high)) \
494  | EFX_INSERT32(96, 127, low, high, value)); \
495  } while (0)
496 
497 #define EFX_SET_QWORD32(qword, low, high, value) do { \
498  (qword).u32[0] = (((qword).u32[0] \
499  & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
500  | EFX_INSERT32(0, 31, low, high, value)); \
501  (qword).u32[1] = (((qword).u32[1] \
502  & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
503  | EFX_INSERT32(32, 63, low, high, value)); \
504  } while (0)
505 
506 #define EFX_SET_DWORD32(dword, low, high, value) do { \
507  (dword).u32[0] = (((dword).u32[0] \
508  & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
509  | EFX_INSERT32(0, 31, low, high, value)); \
510  } while (0)
511 
512 #define EFX_SET_OWORD_FIELD64(oword, field, value) \
513  EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \
514  EFX_HIGH_BIT(field), value)
515 
516 #define EFX_SET_QWORD_FIELD64(qword, field, value) \
517  EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \
518  EFX_HIGH_BIT(field), value)
519 
520 #define EFX_SET_OWORD_FIELD32(oword, field, value) \
521  EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \
522  EFX_HIGH_BIT(field), value)
523 
524 #define EFX_SET_QWORD_FIELD32(qword, field, value) \
525  EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \
526  EFX_HIGH_BIT(field), value)
527 
528 #define EFX_SET_DWORD_FIELD(dword, field, value) \
529  EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \
530  EFX_HIGH_BIT(field), value)
531 
532 
533 
534 #if BITS_PER_LONG == 64
535 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64
536 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64
537 #else
538 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32
539 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32
540 #endif
541 
542 /* Used to avoid compiler warnings about shift range exceeding width
543  * of the data types when dma_addr_t is only 32 bits wide.
544  */
545 #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t))
546 #define EFX_DMA_TYPE_WIDTH(width) \
547  (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH)
548 
549 
550 /* Static initialiser */
551 #define EFX_OWORD32(a, b, c, d) \
552  { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \
553  cpu_to_le32(c), cpu_to_le32(d) } }
554 
555 #endif /* EFX_BITFIELD_H */
uint32_t __le32
Definition: efx_common.h:30
union efx_dword efx_dword_t
A doubleword (4 byte) datatype - little-endian in HW.
efx_qword_t qword[2]
Definition: efx_bitfield.h:101
A doubleword (4 byte) datatype - little-endian in HW.
Definition: efx_bitfield.h:87
uint64_t u64
Definition: stdint.h:25
union efx_oword efx_oword_t
An octword (eight-word, so 16 byte) datatype - little-endian in HW.
union efx_qword efx_qword_t
A quadword (8 byte) datatype - little-endian in HW.
An octword (eight-word, so 16 byte) datatype - little-endian in HW.
Definition: efx_bitfield.h:99
uint64_t __le64
Definition: efx_common.h:31
unsigned long int dword
Definition: smc9000.h:40
A quadword (8 byte) datatype - little-endian in HW.
Definition: efx_bitfield.h:92
FILE_LICENCE(GPL2_OR_LATER_OR_UBDL)
uint32_t u32
Definition: stdint.h:23