iPXE
efx_bitfield.h
Go to the documentation of this file.
1/****************************************************************************
2 *
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2017 Solarflare Communications Inc.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the
10 * License, or any later version.
11 *
12 * You can also choose to distribute this program under the terms of
13 * the Unmodified Binary Distribution Licence (as given in the file
14 * COPYING.UBDL), provided that you have satisfied its requirements.
15 */
16
17#ifndef EFX_BITFIELD_H
18#define EFX_BITFIELD_H
19
20FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
21
22#include <byteswap.h>
23
24/** \file efx_bitfield.h
25 * Efx bitfield access
26 *
27 * Efx NICs make extensive use of bitfields up to 128 bits
28 * wide. Since there is no native 128-bit datatype on most systems,
29 * and since 64-bit datatypes are inefficient on 32-bit systems and
30 * vice versa, we wrap accesses in a way that uses the most efficient
31 * datatype.
32 *
33 * The NICs are PCI devices and therefore little-endian. Since most
34 * of the quantities that we deal with are DMAed to/from host memory,
35 * we define our datatypes (efx_oword_t, efx_qword_t and
36 * efx_dword_t) to be little-endian.
37 */
38
39/* Lowest bit numbers and widths */
40#define EFX_DUMMY_FIELD_LBN 0
41#define EFX_DUMMY_FIELD_WIDTH 0
42#define EFX_WORD_0_LBN 0
43#define EFX_WORD_0_WIDTH 16
44#define EFX_WORD_1_LBN 16
45#define EFX_WORD_1_WIDTH 16
46#define EFX_DWORD_0_LBN 0
47#define EFX_DWORD_0_WIDTH 32
48#define EFX_DWORD_1_LBN 32
49#define EFX_DWORD_1_WIDTH 32
50#define EFX_DWORD_2_LBN 64
51#define EFX_DWORD_2_WIDTH 32
52#define EFX_DWORD_3_LBN 96
53#define EFX_DWORD_3_WIDTH 32
54#define EFX_QWORD_0_LBN 0
55#define EFX_QWORD_0_WIDTH 64
56
57/* Specified attribute (e.g. LBN) of the specified field */
58#define EFX_VAL(field, attribute) field ## _ ## attribute
59/* Low bit number of the specified field */
60#define EFX_LOW_BIT(field) EFX_VAL(field, LBN)
61/* Bit width of the specified field */
62#define EFX_WIDTH(field) EFX_VAL(field, WIDTH)
63/* High bit number of the specified field */
64#define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1)
65/* Mask equal in width to the specified field.
66 *
67 * For example, a field with width 5 would have a mask of 0x1f.
68 *
69 * The maximum width mask that can be generated is 64 bits.
70 */
71#define EFX_MASK64(width) \
72 ((width) == 64 ? ~((u64) 0) : \
73 (((((u64) 1) << (width))) - 1))
74
75/* Mask equal in width to the specified field.
76 *
77 * For example, a field with width 5 would have a mask of 0x1f.
78 *
79 * The maximum width mask that can be generated is 32 bits. Use
80 * EFX_MASK64 for higher width fields.
81 */
82#define EFX_MASK32(width) \
83 ((width) == 32 ? ~((u32) 0) : \
84 (((((u32) 1) << (width))) - 1))
85
86/** A doubleword (4 byte) datatype - little-endian in HW */
87typedef union efx_dword {
90
91/** A quadword (8 byte) datatype - little-endian in HW */
97
98/** An octword (eight-word, so 16 byte) datatype - little-endian in HW */
105
106/* Format string and value expanders for printk */
107#define EFX_DWORD_FMT "%08x"
108#define EFX_QWORD_FMT "%08x:%08x"
109#define EFX_OWORD_FMT "%08x:%08x:%08x:%08x"
110#define EFX_DWORD_VAL(dword) \
111 ((unsigned int) le32_to_cpu((dword).u32[0]))
112#define EFX_QWORD_VAL(qword) \
113 ((unsigned int) le32_to_cpu((qword).u32[1])), \
114 ((unsigned int) le32_to_cpu((qword).u32[0]))
115#define EFX_OWORD_VAL(oword) \
116 ((unsigned int) le32_to_cpu((oword).u32[3])), \
117 ((unsigned int) le32_to_cpu((oword).u32[2])), \
118 ((unsigned int) le32_to_cpu((oword).u32[1])), \
119 ((unsigned int) le32_to_cpu((oword).u32[0]))
120
121/*
122 * Extract bit field portion [low,high) from the native-endian element
123 * which contains bits [min,max).
124 *
125 * For example, suppose "element" represents the high 32 bits of a
126 * 64-bit value, and we wish to extract the bits belonging to the bit
127 * field occupying bits 28-45 of this 64-bit value.
128 *
129 * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give
130 *
131 * ( element ) << 4
132 *
133 * The result will contain the relevant bits filled in in the range
134 * [0,high-low), with garbage in bits [high-low+1,...).
135 */
136#define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \
137 ((low) > (max) || (high) < (min) ? 0 : \
138 (low) > (min) ? \
139 (native_element) >> ((low) - (min)) : \
140 (native_element) << ((min) - (low)))
141
142/*
143 * Extract bit field portion [low,high) from the 64-bit little-endian
144 * element which contains bits [min,max)
145 */
146#define EFX_EXTRACT64(element, min, max, low, high) \
147 EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high)
148
149/*
150 * Extract bit field portion [low,high) from the 32-bit little-endian
151 * element which contains bits [min,max)
152 */
153#define EFX_EXTRACT32(element, min, max, low, high) \
154 EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high)
155
156#define EFX_EXTRACT_OWORD64(oword, low, high) \
157 ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \
158 EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \
159 EFX_MASK64((high) + 1 - (low)))
160
161#define EFX_EXTRACT_QWORD64(qword, low, high) \
162 (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \
163 EFX_MASK64((high) + 1 - (low)))
164
165#define EFX_EXTRACT_OWORD32(oword, low, high) \
166 ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \
167 EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \
168 EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \
169 EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \
170 EFX_MASK32((high) + 1 - (low)))
171
172#define EFX_EXTRACT_QWORD32(qword, low, high) \
173 ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \
174 EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \
175 EFX_MASK32((high) + 1 - (low)))
176
177#define EFX_EXTRACT_DWORD(dword, low, high) \
178 (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \
179 EFX_MASK32((high) + 1 - (low)))
180
181#define EFX_OWORD_FIELD64(oword, field) \
182 EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \
183 EFX_HIGH_BIT(field))
184
185#define EFX_QWORD_FIELD64(qword, field) \
186 EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \
187 EFX_HIGH_BIT(field))
188
189#define EFX_OWORD_FIELD32(oword, field) \
190 EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \
191 EFX_HIGH_BIT(field))
192
193#define EFX_QWORD_FIELD32(qword, field) \
194 EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \
195 EFX_HIGH_BIT(field))
196
197#define EFX_DWORD_FIELD(dword, field) \
198 EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \
199 EFX_HIGH_BIT(field))
200
201#define EFX_OWORD_IS_ZERO64(oword) \
202 (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0)
203
204#define EFX_QWORD_IS_ZERO64(qword) \
205 (((qword).u64[0]) == (__force __le64) 0)
206
207#define EFX_OWORD_IS_ZERO32(oword) \
208 (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \
209 == (__force __le32) 0)
210
211#define EFX_QWORD_IS_ZERO32(qword) \
212 (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0)
213
214#define EFX_DWORD_IS_ZERO(dword) \
215 (((dword).u32[0]) == (__force __le32) 0)
216
217#define EFX_OWORD_IS_ALL_ONES64(oword) \
218 (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0))
219
220#define EFX_QWORD_IS_ALL_ONES64(qword) \
221 ((qword).u64[0] == ~((__force __le64) 0))
222
223#define EFX_OWORD_IS_ALL_ONES32(oword) \
224 (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \
225 == ~((__force __le32) 0))
226
227#define EFX_QWORD_IS_ALL_ONES32(qword) \
228 (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0))
229
230#define EFX_DWORD_IS_ALL_ONES(dword) \
231 ((dword).u32[0] == ~((__force __le32) 0))
232
233#if BITS_PER_LONG == 64
234#define EFX_OWORD_FIELD EFX_OWORD_FIELD64
235#define EFX_QWORD_FIELD EFX_QWORD_FIELD64
236#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64
237#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64
238#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64
239#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64
240#else
241#define EFX_OWORD_FIELD EFX_OWORD_FIELD32
242#define EFX_QWORD_FIELD EFX_QWORD_FIELD32
243#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32
244#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32
245#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32
246#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32
247#endif
248
249/*
250 * Construct bit field portion
251 *
252 * Creates the portion of the bit field [low,high) that lies within
253 * the range [min,max).
254 */
255#define EFX_INSERT_NATIVE64(min, max, low, high, value) \
256 (((low > max) || (high < min)) ? 0 : \
257 ((low > min) ? \
258 (((u64) (value)) << (low - min)) : \
259 (((u64) (value)) >> (min - low))))
260
261#define EFX_INSERT_NATIVE32(min, max, low, high, value) \
262 (((low > max) || (high < min)) ? 0 : \
263 ((low > min) ? \
264 (((u32) (value)) << (low - min)) : \
265 (((u32) (value)) >> (min - low))))
266
267#define EFX_INSERT_NATIVE(min, max, low, high, value) \
268 ((((max - min) >= 32) || ((high - low) >= 32)) ? \
269 EFX_INSERT_NATIVE64(min, max, low, high, value) : \
270 EFX_INSERT_NATIVE32(min, max, low, high, value))
271
272/*
273 * Construct bit field portion
274 *
275 * Creates the portion of the named bit field that lies within the
276 * range [min,max).
277 */
278#define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \
279 EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \
280 EFX_HIGH_BIT(field), value)
281
282/*
283 * Construct bit field
284 *
285 * Creates the portion of the named bit fields that lie within the
286 * range [min,max).
287 */
288#define EFX_INSERT_FIELDS_NATIVE(min, max, \
289 field1, value1, \
290 field2, value2, \
291 field3, value3, \
292 field4, value4, \
293 field5, value5, \
294 field6, value6, \
295 field7, value7, \
296 field8, value8, \
297 field9, value9, \
298 field10, value10) \
299 (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \
300 EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \
301 EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \
302 EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \
303 EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \
304 EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \
305 EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \
306 EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \
307 EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \
308 EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10)))
309
310#define EFX_INSERT_FIELDS64(...) \
311 cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
312
313#define EFX_INSERT_FIELDS32(...) \
314 cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
315
316#define EFX_POPULATE_OWORD64(oword, ...) do { \
317 (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
318 (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \
319 } while (0)
320
321#define EFX_POPULATE_QWORD64(qword, ...) do { \
322 (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
323 } while (0)
324
325#define EFX_POPULATE_OWORD32(oword, ...) do { \
326 (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
327 (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
328 (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \
329 (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \
330 } while (0)
331
332#define EFX_POPULATE_QWORD32(qword, ...) do { \
333 (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
334 (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
335 } while (0)
336
337#define EFX_POPULATE_DWORD(dword, ...) do { \
338 (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
339 } while (0)
340
341#if BITS_PER_LONG == 64
342#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64
343#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64
344#else
345#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32
346#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32
347#endif
348
349/* Populate an octword field with various numbers of arguments */
350#define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD
351#define EFX_POPULATE_OWORD_9(oword, ...) \
352 EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
353#define EFX_POPULATE_OWORD_8(oword, ...) \
354 EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
355#define EFX_POPULATE_OWORD_7(oword, ...) \
356 EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
357#define EFX_POPULATE_OWORD_6(oword, ...) \
358 EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
359#define EFX_POPULATE_OWORD_5(oword, ...) \
360 EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
361#define EFX_POPULATE_OWORD_4(oword, ...) \
362 EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
363#define EFX_POPULATE_OWORD_3(oword, ...) \
364 EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
365#define EFX_POPULATE_OWORD_2(oword, ...) \
366 EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
367#define EFX_POPULATE_OWORD_1(oword, ...) \
368 EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
369#define EFX_ZERO_OWORD(oword) \
370 EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0)
371#define EFX_SET_OWORD(oword) \
372 EFX_POPULATE_OWORD_4(oword, \
373 EFX_DWORD_0, 0xffffffff, \
374 EFX_DWORD_1, 0xffffffff, \
375 EFX_DWORD_2, 0xffffffff, \
376 EFX_DWORD_3, 0xffffffff)
377
378/* Populate a quadword field with various numbers of arguments */
379#define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD
380#define EFX_POPULATE_QWORD_9(qword, ...) \
381 EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
382#define EFX_POPULATE_QWORD_8(qword, ...) \
383 EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
384#define EFX_POPULATE_QWORD_7(qword, ...) \
385 EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
386#define EFX_POPULATE_QWORD_6(qword, ...) \
387 EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
388#define EFX_POPULATE_QWORD_5(qword, ...) \
389 EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
390#define EFX_POPULATE_QWORD_4(qword, ...) \
391 EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
392#define EFX_POPULATE_QWORD_3(qword, ...) \
393 EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
394#define EFX_POPULATE_QWORD_2(qword, ...) \
395 EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
396#define EFX_POPULATE_QWORD_1(qword, ...) \
397 EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
398#define EFX_ZERO_QWORD(qword) \
399 EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0)
400#define EFX_SET_QWORD(qword) \
401 EFX_POPULATE_QWORD_2(qword, \
402 EFX_DWORD_0, 0xffffffff, \
403 EFX_DWORD_1, 0xffffffff)
404
405/* Populate a dword field with various numbers of arguments */
406#define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD
407#define EFX_POPULATE_DWORD_9(dword, ...) \
408 EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
409#define EFX_POPULATE_DWORD_8(dword, ...) \
410 EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
411#define EFX_POPULATE_DWORD_7(dword, ...) \
412 EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
413#define EFX_POPULATE_DWORD_6(dword, ...) \
414 EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
415#define EFX_POPULATE_DWORD_5(dword, ...) \
416 EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
417#define EFX_POPULATE_DWORD_4(dword, ...) \
418 EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
419#define EFX_POPULATE_DWORD_3(dword, ...) \
420 EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
421#define EFX_POPULATE_DWORD_2(dword, ...) \
422 EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
423#define EFX_POPULATE_DWORD_1(dword, ...) \
424 EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
425#define EFX_ZERO_DWORD(dword) \
426 EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0)
427#define EFX_SET_DWORD(dword) \
428 EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff)
429
430/*
431 * Modify a named field within an already-populated structure. Used
432 * for read-modify-write operations.
433 *
434 */
435#define EFX_INVERT_OWORD(oword) do { \
436 (oword).u64[0] = ~((oword).u64[0]); \
437 (oword).u64[1] = ~((oword).u64[1]); \
438 } while (0)
439
440#define EFX_AND_OWORD(oword, from, mask) \
441 do { \
442 (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \
443 (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \
444 } while (0)
445
446#define EFX_AND_QWORD(qword, from, mask) \
447 (qword).u64[0] = (from).u64[0] & (mask).u64[0]
448
449#define EFX_OR_OWORD(oword, from, mask) \
450 do { \
451 (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \
452 (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \
453 } while (0)
454
455#define EFX_INSERT64(min, max, low, high, value) \
456 cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value))
457
458#define EFX_INSERT32(min, max, low, high, value) \
459 cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value))
460
461#define EFX_INPLACE_MASK64(min, max, low, high) \
462 EFX_INSERT64(min, max, low, high, EFX_MASK64((high) + 1 - (low)))
463
464#define EFX_INPLACE_MASK32(min, max, low, high) \
465 EFX_INSERT32(min, max, low, high, EFX_MASK32((high) + 1 - (low)))
466
467#define EFX_SET_OWORD64(oword, low, high, value) do { \
468 (oword).u64[0] = (((oword).u64[0] \
469 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
470 | EFX_INSERT64(0, 63, low, high, value)); \
471 (oword).u64[1] = (((oword).u64[1] \
472 & ~EFX_INPLACE_MASK64(64, 127, low, high)) \
473 | EFX_INSERT64(64, 127, low, high, value)); \
474 } while (0)
475
476#define EFX_SET_QWORD64(qword, low, high, value) do { \
477 (qword).u64[0] = (((qword).u64[0] \
478 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
479 | EFX_INSERT64(0, 63, low, high, value)); \
480 } while (0)
481
482#define EFX_SET_OWORD32(oword, low, high, value) do { \
483 (oword).u32[0] = (((oword).u32[0] \
484 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
485 | EFX_INSERT32(0, 31, low, high, value)); \
486 (oword).u32[1] = (((oword).u32[1] \
487 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
488 | EFX_INSERT32(32, 63, low, high, value)); \
489 (oword).u32[2] = (((oword).u32[2] \
490 & ~EFX_INPLACE_MASK32(64, 95, low, high)) \
491 | EFX_INSERT32(64, 95, low, high, value)); \
492 (oword).u32[3] = (((oword).u32[3] \
493 & ~EFX_INPLACE_MASK32(96, 127, low, high)) \
494 | EFX_INSERT32(96, 127, low, high, value)); \
495 } while (0)
496
497#define EFX_SET_QWORD32(qword, low, high, value) do { \
498 (qword).u32[0] = (((qword).u32[0] \
499 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
500 | EFX_INSERT32(0, 31, low, high, value)); \
501 (qword).u32[1] = (((qword).u32[1] \
502 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
503 | EFX_INSERT32(32, 63, low, high, value)); \
504 } while (0)
505
506#define EFX_SET_DWORD32(dword, low, high, value) do { \
507 (dword).u32[0] = (((dword).u32[0] \
508 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
509 | EFX_INSERT32(0, 31, low, high, value)); \
510 } while (0)
511
512#define EFX_SET_OWORD_FIELD64(oword, field, value) \
513 EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \
514 EFX_HIGH_BIT(field), value)
515
516#define EFX_SET_QWORD_FIELD64(qword, field, value) \
517 EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \
518 EFX_HIGH_BIT(field), value)
519
520#define EFX_SET_OWORD_FIELD32(oword, field, value) \
521 EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \
522 EFX_HIGH_BIT(field), value)
523
524#define EFX_SET_QWORD_FIELD32(qword, field, value) \
525 EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \
526 EFX_HIGH_BIT(field), value)
527
528#define EFX_SET_DWORD_FIELD(dword, field, value) \
529 EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \
530 EFX_HIGH_BIT(field), value)
531
532
533
534#if BITS_PER_LONG == 64
535#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64
536#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64
537#else
538#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32
539#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32
540#endif
541
542/* Used to avoid compiler warnings about shift range exceeding width
543 * of the data types when dma_addr_t is only 32 bits wide.
544 */
545#define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t))
546#define EFX_DMA_TYPE_WIDTH(width) \
547 (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH)
548
549
550/* Static initialiser */
551#define EFX_OWORD32(a, b, c, d) \
552 { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \
553 cpu_to_le32(c), cpu_to_le32(d) } }
554
555#endif /* EFX_BITFIELD_H */
#define __le64
Definition bnxt.h:23
#define __le32
Definition bnxt.h:22
union efx_oword efx_oword_t
An octword (eight-word, so 16 byte) datatype - little-endian in HW.
union efx_dword efx_dword_t
A doubleword (4 byte) datatype - little-endian in HW.
union efx_qword efx_qword_t
A quadword (8 byte) datatype - little-endian in HW.
#define FILE_LICENCE(_licence)
Declare a particular licence as applying to a file.
Definition compiler.h:896
A doubleword (4 byte) datatype - little-endian in HW.
__le32 u32[1]
An octword (eight-word, so 16 byte) datatype - little-endian in HW.
efx_dword_t dword[4]
__le64 u64[2]
__le32 u32[4]
efx_qword_t qword[2]
A quadword (8 byte) datatype - little-endian in HW.
__le32 u32[2]
__le64 u64[1]
efx_dword_t dword[2]