iPXE
Macros | Functions
bigint.c File Reference

Big integer support. More...

#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <ipxe/bigint.h>

Go to the source code of this file.

Macros

#define BIGINT_NTOA_LSB_MIN   16
 Minimum number of least significant bytes included in transcription. More...
 

Functions

 FILE_LICENCE (GPL2_OR_LATER_OR_UBDL)
 
 FILE_SECBOOT (PERMITTED)
 
const char * bigint_ntoa_raw (const bigint_element_t *value0, unsigned int size)
 Transcribe big integer (for debugging) More...
 
void bigint_swap_raw (bigint_element_t *first0, bigint_element_t *second0, unsigned int size, int swap)
 Conditionally swap big integers (in constant time) More...
 
void bigint_multiply_raw (const bigint_element_t *multiplicand0, unsigned int multiplicand_size, const bigint_element_t *multiplier0, unsigned int multiplier_size, bigint_element_t *result0)
 Multiply big integers. More...
 
void bigint_reduce_raw (const bigint_element_t *modulus0, bigint_element_t *result0, unsigned int size)
 Reduce big integer R^2 modulo N. More...
 
void bigint_mod_invert_raw (const bigint_element_t *invertend0, bigint_element_t *inverse0, unsigned int size)
 Compute inverse of odd big integer modulo any power of two. More...
 
int bigint_montgomery_relaxed_raw (const bigint_element_t *modulus0, bigint_element_t *value0, bigint_element_t *result0, unsigned int size)
 Perform relaxed Montgomery reduction (REDC) of a big integer. More...
 
void bigint_montgomery_raw (const bigint_element_t *modulus0, bigint_element_t *value0, bigint_element_t *result0, unsigned int size)
 Perform classic Montgomery reduction (REDC) of a big integer. More...
 
void bigint_ladder_raw (bigint_element_t *result0, bigint_element_t *multiple0, unsigned int size, const bigint_element_t *exponent0, unsigned int exponent_size, bigint_ladder_op_t *op, const void *ctx, void *tmp)
 Perform generalised exponentiation via a Montgomery ladder. More...
 
void bigint_mod_exp_ladder (const bigint_element_t *multiplier0, bigint_element_t *result0, unsigned int size, const void *ctx, void *tmp)
 Perform modular multiplication as part of a Montgomery ladder. More...
 
void bigint_mod_exp_raw (const bigint_element_t *base0, const bigint_element_t *modulus0, const bigint_element_t *exponent0, bigint_element_t *result0, unsigned int size, unsigned int exponent_size, void *tmp)
 Perform modular exponentiation of big integers. More...
 

Detailed Description

Big integer support.

Definition in file bigint.c.

Macro Definition Documentation

◆ BIGINT_NTOA_LSB_MIN

#define BIGINT_NTOA_LSB_MIN   16

Minimum number of least significant bytes included in transcription.

Definition at line 39 of file bigint.c.

Function Documentation

◆ FILE_LICENCE()

FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL  )

◆ FILE_SECBOOT()

FILE_SECBOOT ( PERMITTED  )

◆ bigint_ntoa_raw()

const char* bigint_ntoa_raw ( const bigint_element_t value0,
unsigned int  size 
)

Transcribe big integer (for debugging)

Parameters
value0Element 0 of big integer to be transcribed
sizeNumber of elements
Return values
stringBig integer in string form (may be abbreviated)

Definition at line 48 of file bigint.c.

49  {
50  const bigint_t ( size ) __attribute__ (( may_alias ))
51  *value = ( ( const void * ) value0 );
53  static char buf[256];
54  unsigned int count;
55  int threshold;
56  uint8_t byte;
57  char *tmp;
58  int i;
59 
60  /* Calculate abbreviation threshold, if any */
61  count = ( size * sizeof ( element ) );
62  threshold = count;
63  if ( count >= ( ( sizeof ( buf ) - 1 /* NUL */ ) / 2 /* "xx" */ ) ) {
64  threshold -= ( ( sizeof ( buf ) - 3 /* "..." */
65  - ( BIGINT_NTOA_LSB_MIN * 2 /* "xx" */ )
66  - 1 /* NUL */ ) / 2 /* "xx" */ );
67  }
68 
69  /* Transcribe bytes, abbreviating with "..." if necessary */
70  for ( tmp = buf, i = ( count - 1 ) ; i >= 0 ; i-- ) {
71  element = value->element[ i / sizeof ( element ) ];
72  byte = ( element >> ( 8 * ( i % sizeof ( element ) ) ) );
73  tmp += sprintf ( tmp, "%02x", byte );
74  if ( i == threshold ) {
75  tmp += sprintf ( tmp, "..." );
77  }
78  }
79  assert ( tmp < ( buf + sizeof ( buf ) ) );
80 
81  return buf;
82 }
#define __attribute__(x)
Definition: compiler.h:10
#define sprintf(buf, fmt,...)
Write a formatted string to a buffer.
Definition: stdio.h:37
uint16_t size
Buffer size.
Definition: dwmac.h:14
value element[index]
Definition: bigint.h:398
static uint32_t * value0
Definition: bigint.h:61
unsigned long tmp
Definition: linux_pci.h:65
assert((readw(&hdr->flags) &(GTF_reading|GTF_writing))==0)
pseudo_bit_t value[0x00020]
Definition: arbel.h:13
uint32_t bigint_element_t
Element of a big integer.
Definition: bigint.h:16
static unsigned int count
Number of entries.
Definition: dwmac.h:225
unsigned char uint8_t
Definition: stdint.h:10
unsigned char byte
Definition: smc9000.h:38
typedef bigint_t(X25519_SIZE) x25519_t
An X25519 unsigned big integer used in internal calculations.
#define BIGINT_NTOA_LSB_MIN
Minimum number of least significant bytes included in transcription.
Definition: bigint.c:39

References __attribute__, assert(), BIGINT_NTOA_LSB_MIN, bigint_t(), count, element, size, sprintf, tmp, value, and value0.

◆ bigint_swap_raw()

void bigint_swap_raw ( bigint_element_t first0,
bigint_element_t second0,
unsigned int  size,
int  swap 
)

Conditionally swap big integers (in constant time)

Parameters
first0Element 0 of big integer to be conditionally swapped
second0Element 0 of big integer to be conditionally swapped
sizeNumber of elements in big integers
swapSwap first and second big integers

Definition at line 92 of file bigint.c.

93  {
94  bigint_element_t mask;
96  unsigned int i;
97 
98  /* Construct mask */
99  mask = ( ( bigint_element_t ) ( ! swap ) - 1 );
100 
101  /* Conditionally swap elements */
102  for ( i = 0 ; i < size ; i++ ) {
103  xor = ( mask & ( first0[i] ^ second0[i] ) );
104  first0[i] ^= xor;
105  second0[i] ^= xor;
106  }
107 }
uint16_t size
Buffer size.
Definition: dwmac.h:14
static u32 xor(u32 a, u32 b)
Definition: tlan.h:457
uint32_t bigint_element_t
Element of a big integer.
Definition: bigint.h:16

References size, and xor().

◆ bigint_multiply_raw()

void bigint_multiply_raw ( const bigint_element_t multiplicand0,
unsigned int  multiplicand_size,
const bigint_element_t multiplier0,
unsigned int  multiplier_size,
bigint_element_t result0 
)

Multiply big integers.

Parameters
multiplicand0Element 0 of big integer to be multiplied
multiplicand_sizeNumber of elements in multiplicand
multiplier0Element 0 of big integer to be multiplied
multiplier_sizeNumber of elements in multiplier
result0Element 0 of big integer to hold result

Definition at line 118 of file bigint.c.

122  {
123  unsigned int result_size = ( multiplicand_size + multiplier_size );
124  const bigint_t ( multiplicand_size ) __attribute__ (( may_alias ))
125  *multiplicand = ( ( const void * ) multiplicand0 );
126  const bigint_t ( multiplier_size ) __attribute__ (( may_alias ))
127  *multiplier = ( ( const void * ) multiplier0 );
128  bigint_t ( result_size ) __attribute__ (( may_alias ))
129  *result = ( ( void * ) result0 );
130  bigint_element_t multiplicand_element;
131  const bigint_element_t *multiplier_element;
132  bigint_element_t *result_element;
133  bigint_element_t carry_element;
134  unsigned int i;
135  unsigned int j;
136 
137  /* Zero required portion of result
138  *
139  * All elements beyond the length of the multiplier will be
140  * written before they are read, and so do not need to be
141  * zeroed in advance.
142  */
143  memset ( result, 0, sizeof ( *multiplier ) );
144 
145  /* Multiply integers one element at a time, adding the low
146  * half of the double-element product directly into the
147  * result, and maintaining a running single-element carry.
148  *
149  * The running carry can never overflow beyond a single
150  * element. At each step, the calculation we perform is:
151  *
152  * carry:result[i+j] := ( ( multiplicand[i] * multiplier[j] )
153  * + result[i+j] + carry )
154  *
155  * The maximum value (for n-bit elements) is therefore:
156  *
157  * (2^n - 1)*(2^n - 1) + (2^n - 1) + (2^n - 1) = 2^(2n) - 1
158  *
159  * This is precisely the maximum value for a 2n-bit integer,
160  * and so the carry out remains within the range of an n-bit
161  * integer, i.e. a single element.
162  */
163  for ( i = 0 ; i < multiplicand_size ; i++ ) {
164  multiplicand_element = multiplicand->element[i];
165  multiplier_element = &multiplier->element[0];
166  result_element = &result->element[i];
167  carry_element = 0;
168  for ( j = 0 ; j < multiplier_size ; j++ ) {
169  bigint_multiply_one ( multiplicand_element,
170  *(multiplier_element++),
171  result_element++,
172  &carry_element );
173  }
174  *result_element = carry_element;
175  }
176 }
#define __attribute__(x)
Definition: compiler.h:10
void bigint_multiply_one(const bigint_element_t multiplicand, const bigint_element_t multiplier, bigint_element_t *result, bigint_element_t *carry)
uint32_t bigint_element_t
Element of a big integer.
Definition: bigint.h:16
uint16_t result
Definition: hyperv.h:33
static const uint32_t multiplier
Port multiplier number.
Definition: bigint.h:335
typedef bigint_t(X25519_SIZE) x25519_t
An X25519 unsigned big integer used in internal calculations.
void * memset(void *dest, int character, size_t len) __nonnull

References __attribute__, bigint_multiply_one(), bigint_t(), memset(), multiplier, and result.

◆ bigint_reduce_raw()

void bigint_reduce_raw ( const bigint_element_t modulus0,
bigint_element_t result0,
unsigned int  size 
)

Reduce big integer R^2 modulo N.

Parameters
modulus0Element 0 of big integer modulus
result0Element 0 of big integer to hold result
sizeNumber of elements in modulus and result

Reduce the value R^2 modulo N, where R=2^n and n is the number of bits in the representation of the modulus N, including any leading zero bits.

Definition at line 189 of file bigint.c.

190  {
191  const bigint_t ( size ) __attribute__ (( may_alias ))
192  *modulus = ( ( const void * ) modulus0 );
193  bigint_t ( size ) __attribute__ (( may_alias ))
194  *result = ( ( void * ) result0 );
195  const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
196  unsigned int shift;
197  int max;
198  int sign;
199  int msb;
200  int carry;
201 
202  /* We have the constants:
203  *
204  * N = modulus
205  *
206  * n = number of bits in the modulus (including any leading zeros)
207  *
208  * R = 2^n
209  *
210  * Let r be the extension of the n-bit result register by a
211  * separate two's complement sign bit, such that -R <= r < R,
212  * and define:
213  *
214  * x = r * 2^k
215  *
216  * as the value being reduced modulo N, where k is a
217  * non-negative integer bit shift.
218  *
219  * We want to reduce the initial value R^2=2^(2n), which we
220  * may trivially represent using r=1 and k=2n.
221  *
222  * We then iterate over decrementing k, maintaining the loop
223  * invariant:
224  *
225  * -N <= r < N
226  *
227  * On each iteration we must first double r, to compensate for
228  * having decremented k:
229  *
230  * k' = k - 1
231  *
232  * r' = 2r
233  *
234  * x = r * 2^k = 2r * 2^(k-1) = r' * 2^k'
235  *
236  * Note that doubling the n-bit result register will create a
237  * value of n+1 bits: this extra bit needs to be handled
238  * separately during the calculation.
239  *
240  * We then subtract N (if r is currently non-negative) or add
241  * N (if r is currently negative) to restore the loop
242  * invariant:
243  *
244  * 0 <= r < N => r" = 2r - N => -N <= r" < N
245  * -N <= r < 0 => r" = 2r + N => -N <= r" < N
246  *
247  * Note that since N may use all n bits, the most significant
248  * bit of the n-bit result register is not a valid two's
249  * complement sign bit for r: the extra sign bit therefore
250  * also needs to be handled separately.
251  *
252  * Once we reach k=0, we have x=r and therefore:
253  *
254  * -N <= x < N
255  *
256  * After this last loop iteration (with k=0), we may need to
257  * add a single multiple of N to ensure that x is positive,
258  * i.e. lies within the range 0 <= x < N.
259  *
260  * Since neither the modulus nor the value R^2 are secret, we
261  * may elide approximately half of the total number of
262  * iterations by constructing the initial representation of
263  * R^2 as r=2^m and k=2n-m (for some m such that 2^m < N).
264  */
265 
266  /* Initialise x=R^2 */
267  memset ( result, 0, sizeof ( *result ) );
268  max = ( bigint_max_set_bit ( modulus ) - 2 );
269  if ( max < 0 ) {
270  /* Degenerate case of N=0 or N=1: return a zero result */
271  return;
272  }
274  shift = ( ( 2 * size * width ) - max );
275  sign = 0;
276 
277  /* Iterate as described above */
278  while ( shift-- ) {
279 
280  /* Calculate 2r, storing extra bit separately */
281  msb = bigint_shl ( result );
282 
283  /* Add or subtract N according to current sign */
284  if ( sign ) {
285  carry = bigint_add ( modulus, result );
286  } else {
287  carry = bigint_subtract ( modulus, result );
288  }
289 
290  /* Calculate new sign of result
291  *
292  * We know the result lies in the range -N <= r < N
293  * and so the tuple (old sign, msb, carry) cannot ever
294  * take the values (0, 1, 0) or (1, 0, 0). We can
295  * therefore treat these as don't-care inputs, which
296  * allows us to simplify the boolean expression by
297  * ignoring the old sign completely.
298  */
299  assert ( ( sign == msb ) || carry );
300  sign = ( msb ^ carry );
301  }
302 
303  /* Add N to make result positive if necessary */
304  if ( sign )
305  bigint_add ( modulus, result );
306 
307  /* Sanity check */
308  assert ( ! bigint_is_geq ( result, modulus ) );
309 }
#define __attribute__(x)
Definition: compiler.h:10
#define max(x, y)
Definition: ath.h:41
#define bigint_max_set_bit(value)
Find highest bit set in big integer.
Definition: bigint.h:199
int carry
Definition: bigint.h:68
uint16_t size
Buffer size.
Definition: dwmac.h:14
#define bigint_is_geq(value, reference)
Compare big integers.
Definition: bigint.h:145
assert((readw(&hdr->flags) &(GTF_reading|GTF_writing))==0)
uint32_t bigint_element_t
Element of a big integer.
Definition: bigint.h:16
uint16_t result
Definition: hyperv.h:33
#define bigint_shl(value)
Shift big integer left.
Definition: bigint.h:111
#define bigint_subtract(subtrahend, value)
Subtract big integers.
Definition: bigint.h:99
#define bigint_add(addend, value)
Add big integers.
Definition: bigint.h:87
#define bigint_set_bit(value, bit)
Set bit in big integer.
Definition: bigint.h:156
typedef bigint_t(X25519_SIZE) x25519_t
An X25519 unsigned big integer used in internal calculations.
void * memset(void *dest, int character, size_t len) __nonnull

References __attribute__, assert(), bigint_add, bigint_is_geq, bigint_max_set_bit, bigint_set_bit, bigint_shl, bigint_subtract, bigint_t(), carry, max, memset(), result, and size.

◆ bigint_mod_invert_raw()

void bigint_mod_invert_raw ( const bigint_element_t invertend0,
bigint_element_t inverse0,
unsigned int  size 
)

Compute inverse of odd big integer modulo any power of two.

Parameters
invertend0Element 0 of odd big integer to be inverted
inverse0Element 0 of big integer to hold result
sizeNumber of elements in invertend and result

Definition at line 318 of file bigint.c.

319  {
320  const bigint_t ( size ) __attribute__ (( may_alias ))
321  *invertend = ( ( const void * ) invertend0 );
322  bigint_t ( size ) __attribute__ (( may_alias ))
323  *inverse = ( ( void * ) inverse0 );
324  bigint_element_t accum;
326  unsigned int i;
327 
328  /* Sanity check */
329  assert ( bigint_bit_is_set ( invertend, 0 ) );
330 
331  /* Initialise output */
332  memset ( inverse, 0xff, sizeof ( *inverse ) );
333 
334  /* Compute inverse modulo 2^(width)
335  *
336  * This method is a lightly modified version of the pseudocode
337  * presented in "A New Algorithm for Inversion mod p^k (Koç,
338  * 2017)".
339  *
340  * Each inner loop iteration calculates one bit of the
341  * inverse. The residue value is the two's complement
342  * negation of the value "b" as used by Koç, to allow for
343  * division by two using a logical right shift (since we have
344  * no arithmetic right shift operation for big integers).
345  *
346  * The residue is stored in the as-yet uncalculated portion of
347  * the inverse. The size of the residue therefore decreases
348  * by one element for each outer loop iteration. Trivial
349  * inspection of the algorithm shows that any higher bits
350  * could not contribute to the eventual output value, and so
351  * we may safely reuse storage this way.
352  *
353  * Due to the suffix property of inverses mod 2^k, the result
354  * represents the least significant bits of the inverse modulo
355  * an arbitrarily large 2^k.
356  */
357  for ( i = size ; i > 0 ; i-- ) {
358  const bigint_t ( i ) __attribute__ (( may_alias ))
359  *addend = ( ( const void * ) invertend );
360  bigint_t ( i ) __attribute__ (( may_alias ))
361  *residue = ( ( void * ) inverse );
362 
363  /* Calculate one element's worth of inverse bits */
364  for ( accum = 0, bit = 1 ; bit ; bit <<= 1 ) {
365  if ( bigint_bit_is_set ( residue, 0 ) ) {
366  accum |= bit;
367  bigint_add ( addend, residue );
368  }
369  bigint_shr ( residue );
370  }
371 
372  /* Store in the element no longer required to hold residue */
373  inverse->element[ i - 1 ] = accum;
374  }
375 
376  /* Correct order of inverse elements */
377  for ( i = 0 ; i < ( size / 2 ) ; i++ ) {
378  accum = inverse->element[i];
379  inverse->element[i] = inverse->element[ size - 1 - i ];
380  inverse->element[ size - 1 - i ] = accum;
381  }
382 }
#define __attribute__(x)
Definition: compiler.h:10
uint16_t size
Buffer size.
Definition: dwmac.h:14
static unsigned int unsigned int bit
Definition: bigint.h:392
assert((readw(&hdr->flags) &(GTF_reading|GTF_writing))==0)
#define bigint_shr(value)
Shift big integer right.
Definition: bigint.h:122
uint32_t bigint_element_t
Element of a big integer.
Definition: bigint.h:16
#define bigint_bit_is_set(value, bit)
Test if bit is set in big integer.
Definition: bigint.h:179
#define bigint_add(addend, value)
Add big integers.
Definition: bigint.h:87
typedef bigint_t(X25519_SIZE) x25519_t
An X25519 unsigned big integer used in internal calculations.
void * memset(void *dest, int character, size_t len) __nonnull

References __attribute__, assert(), bigint_add, bigint_bit_is_set, bigint_shr, bigint_t(), bit, memset(), and size.

◆ bigint_montgomery_relaxed_raw()

int bigint_montgomery_relaxed_raw ( const bigint_element_t modulus0,
bigint_element_t value0,
bigint_element_t result0,
unsigned int  size 
)

Perform relaxed Montgomery reduction (REDC) of a big integer.

Parameters
modulus0Element 0 of big integer odd modulus
value0Element 0 of big integer to be reduced
result0Element 0 of big integer to hold result
sizeNumber of elements in modulus and result
Return values
carryCarry out

The value to be reduced will be made divisible by the size of the modulus while retaining its residue class (i.e. multiples of the modulus will be added until the low half of the value is zero).

The result may be expressed as

tR = x + mN

where x is the input value, N is the modulus, R=2^n (where n is the number of bits in the representation of the modulus, including any leading zero bits), and m is the number of multiples of the modulus added to make the result tR divisible by R.

The maximum addend is mN <= (R-1)*N (and such an m can be proven to exist since N is limited to being odd and therefore coprime to R).

Since the result of this addition is one bit larger than the input value, a carry out bit is also returned. The caller may be able to prove that the carry out is always zero, in which case it may be safely ignored.

The upper half of the output value (i.e. t) will also be copied to the result pointer. It is permissible for the result pointer to overlap the lower half of the input value.

External knowledge of constraints on the modulus and the input value may be used to prove constraints on the result. The constraint on the modulus may be generally expressed as

R > kN

for some positive integer k. The value k=1 is allowed, and simply expresses that the modulus fits within the number of bits in its own representation.

For classic Montgomery reduction, we have k=1, i.e. R > N and a separate constraint that the input value is in the range x < RN. This gives the result constraint

tR < RN + (R-1)N < 2RN - N < 2RN t < 2N

A single subtraction of the modulus may therefore be required to bring it into the range t < N.

When the input value is known to be a product of two integers A and B, with A < aN and B < bN, we get the result constraint

tR < abN^2 + (R-1)N < (ab/k)RN + RN - N < (1 + ab/k)RN t < (1 + ab/k)N

If we have k=a=b=1, i.e. R > N with A < N and B < N, then the result is in the range t < 2N and may require a single subtraction of the modulus to bring it into the range t < N so that it may be used as an input on a subsequent iteration.

If we have k=4 and a=b=2, i.e. R > 4N with A < 2N and B < 2N, then the result is in the range t < 2N and may immediately be used as an input on a subsequent iteration, without requiring a subtraction.

Larger values of k may be used to allow for larger values of a and b, which can be useful to elide intermediate reductions in a calculation chain that involves additions and subtractions between multiplications (as used in elliptic curve point addition, for example). As a general rule: each intermediate addition or subtraction will require k to be doubled.

When the input value is known to be a single integer A, with A < aN (as used when converting out of Montgomery form), we get the result constraint

tR < aN + (R-1)N < RN + (a-1)N

If we have a=1, i.e. A < N, then the constraint becomes

tR < RN t < N

and so the result is immediately in the range t < N with no subtraction of the modulus required.

For any larger value of a, the result value t=N becomes possible. Additional external knowledge may potentially be used to prove that t=N cannot occur. For example: if the caller is performing modular exponentiation with a prime modulus (or, more generally, a modulus that is coprime to the base), then there is no way for a non-zero base value to end up producing an exact multiple of the modulus. If t=N cannot be disproved, then conversion out of Montgomery form may require an additional subtraction of the modulus.

Definition at line 488 of file bigint.c.

491  {
492  const bigint_t ( size ) __attribute__ (( may_alias ))
493  *modulus = ( ( const void * ) modulus0 );
494  union {
495  bigint_t ( size * 2 ) full;
496  struct {
497  bigint_t ( size ) low;
498  bigint_t ( size ) high;
499  } __attribute__ (( packed ));
500  } __attribute__ (( may_alias )) *value = ( ( void * ) value0 );
501  bigint_t ( size ) __attribute__ (( may_alias ))
502  *result = ( ( void * ) result0 );
503  static bigint_t ( 1 ) cached;
504  static bigint_t ( 1 ) negmodinv;
505  bigint_element_t multiple;
507  unsigned int i;
508  unsigned int j;
509  int overflow;
510 
511  /* Sanity checks */
512  assert ( bigint_bit_is_set ( modulus, 0 ) );
513 
514  /* Calculate inverse (or use cached version) */
515  if ( cached.element[0] != modulus->element[0] ) {
516  bigint_mod_invert ( modulus, &negmodinv );
517  negmodinv.element[0] = -negmodinv.element[0];
518  cached.element[0] = modulus->element[0];
519  }
520 
521  /* Perform multiprecision Montgomery reduction */
522  for ( i = 0 ; i < size ; i++ ) {
523 
524  /* Determine scalar multiple for this round */
525  multiple = ( value->low.element[i] * negmodinv.element[0] );
526 
527  /* Multiply value to make it divisible by 2^(width*i) */
528  carry = 0;
529  for ( j = 0 ; j < size ; j++ ) {
530  bigint_multiply_one ( multiple, modulus->element[j],
531  &value->full.element[ i + j ],
532  &carry );
533  }
534 
535  /* Since value is now divisible by 2^(width*i), we
536  * know that the current low element must have been
537  * zeroed.
538  */
539  assert ( value->low.element[i] == 0 );
540 
541  /* Store the multiplication carry out in the result,
542  * avoiding the need to immediately propagate the
543  * carry through the remaining elements.
544  */
545  result->element[i] = carry;
546  }
547 
548  /* Add the accumulated carries */
549  overflow = bigint_add ( result, &value->high );
550 
551  /* Copy to result buffer */
552  bigint_copy ( &value->high, result );
553 
554  return overflow;
555 }
#define __attribute__(x)
Definition: compiler.h:10
uint32_t low
Low 16 bits of address.
Definition: myson.h:19
int carry
Definition: bigint.h:68
uint16_t size
Buffer size.
Definition: dwmac.h:14
void bigint_multiply_one(const bigint_element_t multiplicand, const bigint_element_t multiplier, bigint_element_t *result, bigint_element_t *carry)
value element[index]
Definition: bigint.h:398
static uint32_t * value0
Definition: bigint.h:61
#define bigint_mod_invert(invertend, inverse)
Compute inverse of odd big integer modulo any power of two.
Definition: bigint.h:286
assert((readw(&hdr->flags) &(GTF_reading|GTF_writing))==0)
pseudo_bit_t value[0x00020]
Definition: arbel.h:13
#define bigint_copy(source, dest)
Copy big integer.
Definition: bigint.h:235
uint32_t bigint_element_t
Element of a big integer.
Definition: bigint.h:16
uint32_t high
High 32 bits of address.
Definition: myson.h:20
uint16_t result
Definition: hyperv.h:33
#define bigint_bit_is_set(value, bit)
Test if bit is set in big integer.
Definition: bigint.h:179
#define bigint_add(addend, value)
Add big integers.
Definition: bigint.h:87
typedef bigint_t(X25519_SIZE) x25519_t
An X25519 unsigned big integer used in internal calculations.
if(natsemi->flags &NATSEMI_64BIT) return 1

References __attribute__, assert(), bigint_add, bigint_bit_is_set, bigint_copy, bigint_mod_invert, bigint_multiply_one(), bigint_t(), carry, high, low, result, size, value, and value0.

◆ bigint_montgomery_raw()

void bigint_montgomery_raw ( const bigint_element_t modulus0,
bigint_element_t value0,
bigint_element_t result0,
unsigned int  size 
)

Perform classic Montgomery reduction (REDC) of a big integer.

Parameters
modulus0Element 0 of big integer odd modulus
value0Element 0 of big integer to be reduced
result0Element 0 of big integer to hold result
sizeNumber of elements in modulus and result

Definition at line 565 of file bigint.c.

568  {
569  const bigint_t ( size ) __attribute__ (( may_alias ))
570  *modulus = ( ( const void * ) modulus0 );
571  union {
572  bigint_t ( size * 2 ) full;
573  struct {
574  bigint_t ( size ) low;
575  bigint_t ( size ) high;
576  } __attribute__ (( packed ));
577  } __attribute__ (( may_alias )) *value = ( ( void * ) value0 );
578  bigint_t ( size ) __attribute__ (( may_alias ))
579  *result = ( ( void * ) result0 );
580  int overflow;
581  int underflow;
582 
583  /* Sanity check */
584  assert ( ! bigint_is_geq ( &value->high, modulus ) );
585 
586  /* Perform relaxed Montgomery reduction */
587  overflow = bigint_montgomery_relaxed ( modulus, &value->full, result );
588 
589  /* Conditionally subtract the modulus once */
590  underflow = bigint_subtract ( modulus, result );
591  bigint_swap ( result, &value->high, ( underflow & ~overflow ) );
592 
593  /* Sanity check */
594  assert ( ! bigint_is_geq ( result, modulus ) );
595 }
#define __attribute__(x)
Definition: compiler.h:10
uint32_t low
Low 16 bits of address.
Definition: myson.h:19
uint16_t size
Buffer size.
Definition: dwmac.h:14
#define bigint_montgomery_relaxed(modulus, value, result)
Perform relaxed Montgomery reduction (REDC) of a big integer.
Definition: bigint.h:300
static uint32_t * value0
Definition: bigint.h:61
#define bigint_is_geq(value, reference)
Compare big integers.
Definition: bigint.h:145
assert((readw(&hdr->flags) &(GTF_reading|GTF_writing))==0)
pseudo_bit_t value[0x00020]
Definition: arbel.h:13
uint32_t high
High 32 bits of address.
Definition: myson.h:20
#define bigint_swap(first, second, swap)
Conditionally swap big integers (in constant time)
Definition: bigint.h:247
uint16_t result
Definition: hyperv.h:33
#define bigint_subtract(subtrahend, value)
Subtract big integers.
Definition: bigint.h:99
typedef bigint_t(X25519_SIZE) x25519_t
An X25519 unsigned big integer used in internal calculations.

References __attribute__, assert(), bigint_is_geq, bigint_montgomery_relaxed, bigint_subtract, bigint_swap, bigint_t(), high, low, result, size, value, and value0.

◆ bigint_ladder_raw()

void bigint_ladder_raw ( bigint_element_t result0,
bigint_element_t multiple0,
unsigned int  size,
const bigint_element_t exponent0,
unsigned int  exponent_size,
bigint_ladder_op_t op,
const void *  ctx,
void *  tmp 
)

Perform generalised exponentiation via a Montgomery ladder.

Parameters
result0Element 0 of result (initialised to identity element)
multiple0Element 0 of multiple (initialised to generator)
sizeNumber of elements in result and multiple
exponent0Element 0 of exponent
exponent_sizeNumber of elements in exponent
opMontgomery ladder commutative operation
ctxOperation context (if needed)
tmpTemporary working space (if needed)

The Montgomery ladder may be used to perform any operation that is isomorphic to exponentiation, i.e. to compute the result

r = g^e = g * g * g * g * .... * g

for an arbitrary commutative operation "*", generator "g" and exponent "e".

The result "r" is computed in constant time (assuming that the underlying operation is constant time) in k steps, where k is the number of bits in the big integer representation of the exponent.

The result "r" must be initialised to the operation's identity element, and the multiple must be initialised to the generator "g". On exit, the multiple will contain

m = r * g = g^(e+1)

Note that the terminology used here refers to exponentiation defined as repeated multiplication, but that the ladder may equally well be used to perform any isomorphic operation (such as multiplication defined as repeated addition).

Definition at line 632 of file bigint.c.

636  {
637  bigint_t ( size ) __attribute__ (( may_alias ))
638  *result = ( ( void * ) result0 );
639  bigint_t ( size ) __attribute__ (( may_alias ))
640  *multiple = ( ( void * ) multiple0 );
641  const bigint_t ( exponent_size ) __attribute__ (( may_alias ))
642  *exponent = ( ( const void * ) exponent0 );
643  const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
644  unsigned int bit = ( exponent_size * width );
645  int toggle = 0;
646  int previous;
647 
648  /* We have two physical storage locations: Rres (the "result"
649  * register) and Rmul (the "multiple" register).
650  *
651  * On entry we have:
652  *
653  * Rres = g^0 = 1 (the identity element)
654  * Rmul = g (the generator)
655  *
656  * For calculation purposes, define two virtual registers R[0]
657  * and R[1], mapped to the underlying physical storage
658  * locations via a boolean toggle state "t":
659  *
660  * R[t] -> Rres
661  * R[~t] -> Rmul
662  *
663  * Define the initial toggle state to be t=0, so that we have:
664  *
665  * R[0] = g^0 = 1 (the identity element)
666  * R[1] = g (the generator)
667  *
668  * The Montgomery ladder then iterates over each bit "b" of
669  * the exponent "e" (from MSB down to LSB), computing:
670  *
671  * R[1] := R[0] * R[1], R[0] := R[0] * R[0] (if b=0)
672  * R[0] := R[1] * R[0], R[1] := R[1] * R[1] (if b=1)
673  *
674  * i.e.
675  *
676  * R[~b] := R[b] * R[~b], R[b] := R[b] * R[b]
677  *
678  * To avoid data-dependent memory access patterns, we
679  * implement this as:
680  *
681  * Rmul := Rres * Rmul
682  * Rres := Rres * Rres
683  *
684  * and update the toggle state "t" (via constant-time
685  * conditional swaps) as needed to ensure that R[b] always
686  * maps to Rres and R[~b] always maps to Rmul.
687  */
688  while ( bit-- ) {
689 
690  /* Update toggle state t := b
691  *
692  * If the new toggle state is not equal to the old
693  * toggle state, then we must swap R[0] and R[1] (in
694  * constant time).
695  */
696  previous = toggle;
697  toggle = bigint_bit_is_set ( exponent, bit );
698  bigint_swap ( result, multiple, ( toggle ^ previous ) );
699 
700  /* Calculate Rmul = R[~b] := R[b] * R[~b] = Rres * Rmul */
701  op ( result->element, multiple->element, size, ctx, tmp );
702 
703  /* Calculate Rres = R[b] := R[b] * R[b] = Rres * Rres */
704  op ( result->element, result->element, size, ctx, tmp );
705  }
706 
707  /* Reset toggle state to zero */
708  bigint_swap ( result, multiple, toggle );
709 }
#define __attribute__(x)
Definition: compiler.h:10
uint16_t size
Buffer size.
Definition: dwmac.h:14
static unsigned int unsigned int bit
Definition: bigint.h:392
struct golan_eq_context ctx
Definition: CIB_PRM.h:28
unsigned long tmp
Definition: linux_pci.h:65
uint32_t bigint_element_t
Element of a big integer.
Definition: bigint.h:16
#define bigint_swap(first, second, swap)
Conditionally swap big integers (in constant time)
Definition: bigint.h:247
uint16_t result
Definition: hyperv.h:33
static uint16_t struct vmbus_xfer_pages_operations * op
Definition: netvsc.h:327
#define bigint_bit_is_set(value, bit)
Test if bit is set in big integer.
Definition: bigint.h:179
typedef bigint_t(X25519_SIZE) x25519_t
An X25519 unsigned big integer used in internal calculations.

References __attribute__, bigint_bit_is_set, bigint_swap, bigint_t(), bit, ctx, op, result, size, and tmp.

◆ bigint_mod_exp_ladder()

void bigint_mod_exp_ladder ( const bigint_element_t multiplier0,
bigint_element_t result0,
unsigned int  size,
const void *  ctx,
void *  tmp 
)

Perform modular multiplication as part of a Montgomery ladder.

Parameters
operandElement 0 of first input operand (may overlap result)
resultElement 0 of second input operand and result
sizeNumber of elements in operands and result
ctxOperation context (odd modulus, or NULL)
tmpTemporary working space

Definition at line 720 of file bigint.c.

722  {
723  const bigint_t ( size ) __attribute__ (( may_alias ))
724  *multiplier = ( ( const void * ) multiplier0 );
725  bigint_t ( size ) __attribute__ (( may_alias ))
726  *result = ( ( void * ) result0 );
727  const bigint_t ( size ) __attribute__ (( may_alias ))
728  *modulus = ( ( const void * ) ctx );
729  bigint_t ( size * 2 ) __attribute__ (( may_alias ))
730  *product = ( ( void * ) tmp );
731 
732  /* Multiply and reduce */
734  if ( modulus ) {
735  bigint_montgomery ( modulus, product, result );
736  } else {
738  }
739 }
#define __attribute__(x)
Definition: compiler.h:10
uint16_t size
Buffer size.
Definition: dwmac.h:14
struct golan_eq_context ctx
Definition: CIB_PRM.h:28
unsigned long tmp
Definition: linux_pci.h:65
#define bigint_shrink(source, dest)
Shrink big integer.
Definition: bigint.h:222
uint16_t result
Definition: hyperv.h:33
#define bigint_montgomery(modulus, value, result)
Perform classic Montgomery reduction (REDC) of a big integer.
Definition: bigint.h:314
static const uint32_t multiplier
Port multiplier number.
Definition: bigint.h:335
#define bigint_multiply(multiplicand, multiplier, result)
Multiply big integers.
Definition: bigint.h:260
uint8_t product
Product string.
Definition: smbios.h:17
typedef bigint_t(X25519_SIZE) x25519_t
An X25519 unsigned big integer used in internal calculations.

References __attribute__, bigint_montgomery, bigint_multiply, bigint_shrink, bigint_t(), ctx, multiplier, product, result, size, and tmp.

Referenced by bigint_mod_exp_raw(), ecdsa_invert(), and weierstrass_done_raw().

◆ bigint_mod_exp_raw()

void bigint_mod_exp_raw ( const bigint_element_t base0,
const bigint_element_t modulus0,
const bigint_element_t exponent0,
bigint_element_t result0,
unsigned int  size,
unsigned int  exponent_size,
void *  tmp 
)

Perform modular exponentiation of big integers.

Parameters
base0Element 0 of big integer base
modulus0Element 0 of big integer modulus
exponent0Element 0 of big integer exponent
result0Element 0 of big integer to hold result
sizeNumber of elements in base, modulus, and result
exponent_sizeNumber of elements in exponent
tmpTemporary working space

Definition at line 752 of file bigint.c.

757  {
758  const bigint_t ( size ) __attribute__ (( may_alias )) *base =
759  ( ( const void * ) base0 );
760  const bigint_t ( size ) __attribute__ (( may_alias )) *modulus =
761  ( ( const void * ) modulus0 );
762  const bigint_t ( exponent_size ) __attribute__ (( may_alias ))
763  *exponent = ( ( const void * ) exponent0 );
764  bigint_t ( size ) __attribute__ (( may_alias )) *result =
765  ( ( void * ) result0 );
766  const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
767  struct {
768  struct {
769  bigint_t ( size ) modulus;
770  bigint_t ( size ) stash;
771  };
772  union {
773  bigint_t ( 2 * size ) full;
774  bigint_t ( size ) low;
775  } product;
776  } *temp = tmp;
777  const uint8_t one[1] = { 1 };
778  bigint_element_t submask;
779  unsigned int subsize;
780  unsigned int scale;
781  unsigned int i;
782 
783  /* Sanity check */
784  assert ( sizeof ( *temp ) == bigint_mod_exp_tmp_len ( modulus ) );
785 
786  /* Handle degenerate case of zero modulus */
787  if ( ! bigint_max_set_bit ( modulus ) ) {
788  memset ( result, 0, sizeof ( *result ) );
789  return;
790  }
791 
792  /* Factor modulus as (N * 2^scale) where N is odd */
793  bigint_copy ( modulus, &temp->modulus );
794  for ( scale = 0 ; ( ! bigint_bit_is_set ( &temp->modulus, 0 ) ) ;
795  scale++ ) {
796  bigint_shr ( &temp->modulus );
797  }
798  subsize = ( ( scale + width - 1 ) / width );
799  submask = ( ( 1UL << ( scale % width ) ) - 1 );
800  if ( ! submask )
801  submask = ~submask;
802 
803  /* Calculate (R^2 mod N) */
804  bigint_reduce ( &temp->modulus, &temp->stash );
805 
806  /* Initialise result = Montgomery(1, R^2 mod N) */
807  bigint_grow ( &temp->stash, &temp->product.full );
808  bigint_montgomery ( &temp->modulus, &temp->product.full, result );
809 
810  /* Convert base into Montgomery form */
811  bigint_multiply ( base, &temp->stash, &temp->product.full );
812  bigint_montgomery ( &temp->modulus, &temp->product.full,
813  &temp->stash );
814 
815  /* Calculate x1 = base^exponent modulo N */
816  bigint_ladder ( result, &temp->stash, exponent, bigint_mod_exp_ladder,
817  &temp->modulus, &temp->product );
818 
819  /* Convert back out of Montgomery form */
820  bigint_grow ( result, &temp->product.full );
821  bigint_montgomery_relaxed ( &temp->modulus, &temp->product.full,
822  result );
823 
824  /* Handle even moduli via Garner's algorithm */
825  if ( subsize ) {
826  const bigint_t ( subsize ) __attribute__ (( may_alias ))
827  *subbase = ( ( const void * ) base );
828  bigint_t ( subsize ) __attribute__ (( may_alias ))
829  *submodulus = ( ( void * ) &temp->modulus );
830  bigint_t ( subsize ) __attribute__ (( may_alias ))
831  *substash = ( ( void * ) &temp->stash );
832  bigint_t ( subsize ) __attribute__ (( may_alias ))
833  *subresult = ( ( void * ) result );
834  union {
835  bigint_t ( 2 * subsize ) full;
836  bigint_t ( subsize ) low;
837  } __attribute__ (( may_alias ))
838  *subproduct = ( ( void * ) &temp->product.full );
839 
840  /* Calculate x2 = base^exponent modulo 2^k */
841  bigint_init ( substash, one, sizeof ( one ) );
842  bigint_copy ( subbase, submodulus );
843  bigint_ladder ( substash, submodulus, exponent,
844  bigint_mod_exp_ladder, NULL, subproduct );
845 
846  /* Reconstruct N */
847  bigint_copy ( modulus, &temp->modulus );
848  for ( i = 0 ; i < scale ; i++ )
849  bigint_shr ( &temp->modulus );
850 
851  /* Calculate N^-1 modulo 2^k */
852  bigint_mod_invert ( submodulus, &subproduct->low );
853  bigint_copy ( &subproduct->low, submodulus );
854 
855  /* Calculate y = (x2 - x1) * N^-1 modulo 2^k */
856  bigint_subtract ( subresult, substash );
857  bigint_multiply ( substash, submodulus, &subproduct->full );
858  subproduct->low.element[ subsize - 1 ] &= submask;
859  bigint_grow ( &subproduct->low, &temp->stash );
860 
861  /* Reconstruct N */
862  bigint_mod_invert ( submodulus, &subproduct->low );
863  bigint_copy ( &subproduct->low, submodulus );
864 
865  /* Calculate x = x1 + N * y */
866  bigint_multiply ( &temp->modulus, &temp->stash,
867  &temp->product.full );
868  bigint_add ( &temp->product.low, result );
869  }
870 }
#define __attribute__(x)
Definition: compiler.h:10
uint32_t base
Base.
Definition: librm.h:138
uint32_t low
Low 16 bits of address.
Definition: myson.h:19
#define bigint_max_set_bit(value)
Find highest bit set in big integer.
Definition: bigint.h:199
uint16_t size
Buffer size.
Definition: dwmac.h:14
#define bigint_grow(source, dest)
Grow big integer.
Definition: bigint.h:209
#define bigint_init(value, data, len)
Initialise big integer.
Definition: bigint.h:62
#define bigint_montgomery_relaxed(modulus, value, result)
Perform relaxed Montgomery reduction (REDC) of a big integer.
Definition: bigint.h:300
unsigned long tmp
Definition: linux_pci.h:65
#define bigint_mod_invert(invertend, inverse)
Compute inverse of odd big integer modulo any power of two.
Definition: bigint.h:286
assert((readw(&hdr->flags) &(GTF_reading|GTF_writing))==0)
#define bigint_shr(value)
Shift big integer right.
Definition: bigint.h:122
#define bigint_copy(source, dest)
Copy big integer.
Definition: bigint.h:235
uint32_t bigint_element_t
Element of a big integer.
Definition: bigint.h:16
unsigned char uint8_t
Definition: stdint.h:10
uint16_t result
Definition: hyperv.h:33
#define bigint_montgomery(modulus, value, result)
Perform classic Montgomery reduction (REDC) of a big integer.
Definition: bigint.h:314
#define bigint_multiply(multiplicand, multiplier, result)
Multiply big integers.
Definition: bigint.h:260
#define bigint_reduce(modulus, result)
Reduce big integer R^2 modulo N.
Definition: bigint.h:274
uint8_t product
Product string.
Definition: smbios.h:17
#define bigint_ladder(result, multiple, exponent, op, ctx, tmp)
Perform generalised exponentiation via a Montgomery ladder.
Definition: bigint.h:330
#define bigint_bit_is_set(value, bit)
Test if bit is set in big integer.
Definition: bigint.h:179
#define bigint_subtract(subtrahend, value)
Subtract big integers.
Definition: bigint.h:99
#define bigint_mod_exp_tmp_len(modulus)
Calculate temporary working space required for moduluar exponentiation.
Definition: bigint.h:361
#define bigint_add(addend, value)
Add big integers.
Definition: bigint.h:87
#define NULL
NULL pointer (VOID *)
Definition: Base.h:322
typedef bigint_t(X25519_SIZE) x25519_t
An X25519 unsigned big integer used in internal calculations.
void * memset(void *dest, int character, size_t len) __nonnull
void bigint_mod_exp_ladder(const bigint_element_t *multiplier0, bigint_element_t *result0, unsigned int size, const void *ctx, void *tmp)
Perform modular multiplication as part of a Montgomery ladder.
Definition: bigint.c:720

References __attribute__, assert(), base, bigint_add, bigint_bit_is_set, bigint_copy, bigint_grow, bigint_init, bigint_ladder, bigint_max_set_bit, bigint_mod_exp_ladder(), bigint_mod_exp_tmp_len, bigint_mod_invert, bigint_montgomery, bigint_montgomery_relaxed, bigint_multiply, bigint_reduce, bigint_shr, bigint_subtract, bigint_t(), low, memset(), NULL, product, result, size, and tmp.