iPXE
ath5k_phy.c
Go to the documentation of this file.
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Lightly modified for iPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
10 *
11 * Permission to use, copy, modify, and distribute this software for any
12 * purpose with or without fee is hereby granted, provided that the above
13 * copyright notice and this permission notice appear in all copies.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
16 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
17 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
18 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
19 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
20 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
21 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 *
23 */
24
26FILE_SECBOOT ( FORBIDDEN );
27
28#define _ATH5K_PHY
29
30#include <unistd.h>
31#include <stdlib.h>
32
33#include "ath5k.h"
34#include "reg.h"
35#include "base.h"
36#include "rfbuffer.h"
37#include "rfgain.h"
38
39static inline int min(int x, int y)
40{
41 return (x < y) ? x : y;
42}
43
44static inline int max(int x, int y)
45{
46 return (x > y) ? x : y;
47}
48
49/*
50 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
51 */
52static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
53 const struct ath5k_rf_reg *rf_regs,
54 u32 val, u8 reg_id, int set)
55{
56 const struct ath5k_rf_reg *rfreg = NULL;
57 u8 offset, bank, num_bits, col, position;
58 u16 entry;
59 u32 mask, data, last_bit, bits_shifted, first_bit;
60 u32 *rfb;
61 s32 bits_left;
62 unsigned i;
63
64 data = 0;
65 rfb = ah->ah_rf_banks;
66
67 for (i = 0; i < ah->ah_rf_regs_count; i++) {
68 if (rf_regs[i].index == reg_id) {
69 rfreg = &rf_regs[i];
70 break;
71 }
72 }
73
74 if (rfb == NULL || rfreg == NULL) {
75 DBG("ath5k: RF register not found!\n");
76 /* should not happen */
77 return 0;
78 }
79
80 bank = rfreg->bank;
81 num_bits = rfreg->field.len;
82 first_bit = rfreg->field.pos;
83 col = rfreg->field.col;
84
85 /* first_bit is an offset from bank's
86 * start. Since we have all banks on
87 * the same array, we use this offset
88 * to mark each bank's start */
89 offset = ah->ah_offset[bank];
90
91 /* Boundary check */
92 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
93 DBG("ath5k: RF invalid values at offset %d\n", offset);
94 return 0;
95 }
96
97 entry = ((first_bit - 1) / 8) + offset;
98 position = (first_bit - 1) % 8;
99
100 if (set)
101 data = ath5k_hw_bitswap(val, num_bits);
102
103 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
104 position = 0, entry++) {
105
106 last_bit = (position + bits_left > 8) ? 8 :
107 position + bits_left;
108
109 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
110 (col * 8);
111
112 if (set) {
113 rfb[entry] &= ~mask;
114 rfb[entry] |= ((data << position) << (col * 8)) & mask;
115 data >>= (8 - position);
116 } else {
117 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
118 << bits_shifted;
119 bits_shifted += last_bit - position;
120 }
121
122 bits_left -= 8 - position;
123 }
124
125 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
126
127 return data;
128}
129
130/**********************\
131* RF Gain optimization *
132\**********************/
133
134/*
135 * This code is used to optimize rf gain on different environments
136 * (temprature mostly) based on feedback from a power detector.
137 *
138 * It's only used on RF5111 and RF5112, later RF chips seem to have
139 * auto adjustment on hw -notice they have a much smaller BANK 7 and
140 * no gain optimization ladder-.
141 *
142 * For more infos check out this patent doc
143 * http://www.freepatentsonline.com/7400691.html
144 *
145 * This paper describes power drops as seen on the receiver due to
146 * probe packets
147 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
148 * %20of%20Power%20Control.pdf
149 *
150 * And this is the MadWiFi bug entry related to the above
151 * http://madwifi-project.org/ticket/1659
152 * with various measurements and diagrams
153 *
154 * TODO: Deal with power drops due to probes by setting an apropriate
155 * tx power on the probe packets ! Make this part of the calibration process.
156 */
157
158/* Initialize ah_gain durring attach */
160{
161 /* Initialize the gain optimization values */
162 switch (ah->ah_radio) {
163 case AR5K_RF5111:
164 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
165 ah->ah_gain.g_low = 20;
166 ah->ah_gain.g_high = 35;
167 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
168 break;
169 case AR5K_RF5112:
170 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
171 ah->ah_gain.g_low = 20;
172 ah->ah_gain.g_high = 85;
173 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
174 break;
175 default:
176 return -EINVAL;
177 }
178
179 return 0;
180}
181
182/* Schedule a gain probe check on the next transmited packet.
183 * That means our next packet is going to be sent with lower
184 * tx power and a Peak to Average Power Detector (PAPD) will try
185 * to measure the gain.
186 *
187 * TODO: Use propper tx power setting for the probe packet so
188 * that we don't observe a serious power drop on the receiver
189 *
190 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
191 * just after we enable the probe so that we don't mess with
192 * standard traffic ? Maybe it's time to use sw interrupts and
193 * a probe tasklet !!!
194 */
196{
197
198 /* Skip if gain calibration is inactive or
199 * we already handle a probe request */
200 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
201 return;
202
203 /* Send the packet with 2dB below max power as
204 * patent doc suggest */
205 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
208
209 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
210
211}
212
213/* Calculate gain_F measurement correction
214 * based on the current step for RF5112 rev. 2 */
216{
217 u32 mix, step;
218 const struct ath5k_gain_opt *go;
219 const struct ath5k_gain_opt_step *g_step;
220 const struct ath5k_rf_reg *rf_regs;
221
222 /* Only RF5112 Rev. 2 supports it */
223 if ((ah->ah_radio != AR5K_RF5112) ||
224 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
225 return 0;
226
227 go = &rfgain_opt_5112;
228 rf_regs = rf_regs_5112a;
229 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
230
231 g_step = &go->go_step[ah->ah_gain.g_step_idx];
232
233 if (ah->ah_rf_banks == NULL)
234 return 0;
235
236 ah->ah_gain.g_f_corr = 0;
237
238 /* No VGA (Variable Gain Amplifier) override, skip */
239 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0) != 1)
240 return 0;
241
242 /* Mix gain stepping */
243 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, 0);
244
245 /* Mix gain override */
246 mix = g_step->gos_param[0];
247
248 switch (mix) {
249 case 3:
250 ah->ah_gain.g_f_corr = step * 2;
251 break;
252 case 2:
253 ah->ah_gain.g_f_corr = (step - 5) * 2;
254 break;
255 case 1:
256 ah->ah_gain.g_f_corr = step;
257 break;
258 default:
259 ah->ah_gain.g_f_corr = 0;
260 break;
261 }
262
263 return ah->ah_gain.g_f_corr;
264}
265
266/* Check if current gain_F measurement is in the range of our
267 * power detector windows. If we get a measurement outside range
268 * we know it's not accurate (detectors can't measure anything outside
269 * their detection window) so we must ignore it */
271{
272 const struct ath5k_rf_reg *rf_regs;
273 u32 step, mix_ovr, level[4];
274
275 if (ah->ah_rf_banks == NULL)
276 return 0;
277
278 if (ah->ah_radio == AR5K_RF5111) {
279
280 rf_regs = rf_regs_5111;
281 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
282
284 0);
285
286 level[0] = 0;
287 level[1] = (step == 63) ? 50 : step + 4;
288 level[2] = (step != 63) ? 64 : level[0];
289 level[3] = level[2] + 50 ;
290
291 ah->ah_gain.g_high = level[3] -
293 ah->ah_gain.g_low = level[0] +
295 } else {
296
297 rf_regs = rf_regs_5112;
298 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
299
300 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
301 0);
302
303 level[0] = level[2] = 0;
304
305 if (mix_ovr == 1) {
306 level[1] = level[3] = 83;
307 } else {
308 level[1] = level[3] = 107;
309 ah->ah_gain.g_high = 55;
310 }
311 }
312
313 return (ah->ah_gain.g_current >= level[0] &&
314 ah->ah_gain.g_current <= level[1]) ||
315 (ah->ah_gain.g_current >= level[2] &&
316 ah->ah_gain.g_current <= level[3]);
317}
318
319/* Perform gain_F adjustment by choosing the right set
320 * of parameters from rf gain optimization ladder */
322{
323 const struct ath5k_gain_opt *go;
324 const struct ath5k_gain_opt_step *g_step;
325 int ret = 0;
326
327 switch (ah->ah_radio) {
328 case AR5K_RF5111:
329 go = &rfgain_opt_5111;
330 break;
331 case AR5K_RF5112:
332 go = &rfgain_opt_5112;
333 break;
334 default:
335 return 0;
336 }
337
338 g_step = &go->go_step[ah->ah_gain.g_step_idx];
339
340 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
341
342 /* Reached maximum */
343 if (ah->ah_gain.g_step_idx == 0)
344 return -1;
345
346 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
347 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
348 ah->ah_gain.g_step_idx > 0;
349 g_step = &go->go_step[ah->ah_gain.g_step_idx])
350 ah->ah_gain.g_target -= 2 *
351 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
352 g_step->gos_gain);
353
354 ret = 1;
355 goto done;
356 }
357
358 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
359
360 /* Reached minimum */
361 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
362 return -2;
363
364 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
365 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
366 ah->ah_gain.g_step_idx < go->go_steps_count-1;
367 g_step = &go->go_step[ah->ah_gain.g_step_idx])
368 ah->ah_gain.g_target -= 2 *
369 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
370 g_step->gos_gain);
371
372 ret = 2;
373 goto done;
374 }
375
376done:
377 DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, "
378 "target gain %d\n", ret, ah->ah_gain.g_step_idx,
379 ah->ah_gain.g_current, ah->ah_gain.g_target);
380
381 return ret;
382}
383
384/* Main callback for thermal rf gain calibration engine
385 * Check for a new gain reading and schedule an adjustment
386 * if needed.
387 *
388 * TODO: Use sw interrupt to schedule reset if gain_F needs
389 * adjustment */
391{
392 u32 data, type;
393 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
394
395 if (ah->ah_rf_banks == NULL ||
396 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
398
399 /* No check requested, either engine is inactive
400 * or an adjustment is already requested */
401 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
402 goto done;
403
404 /* Read the PAPD (Peak to Average Power Detector)
405 * register */
407
408 /* No probe is scheduled, read gain_F measurement */
410 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
412
413 /* If tx packet is CCK correct the gain_F measurement
414 * by cck ofdm gain delta */
416 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
417 ah->ah_gain.g_current +=
419 else
420 ah->ah_gain.g_current +=
422 }
423
424 /* Further correct gain_F measurement for
425 * RF5112A radios */
426 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
428 ah->ah_gain.g_current =
429 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
430 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
431 0;
432 }
433
434 /* Check if measurement is ok and if we need
435 * to adjust gain, schedule a gain adjustment,
436 * else switch back to the acive state */
438 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
440 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
441 } else {
442 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
443 }
444 }
445
446done:
447 return ah->ah_gain.g_state;
448}
449
450/* Write initial rf gain table to set the RF sensitivity
451 * this one works on all RF chips and has nothing to do
452 * with gain_F calibration */
453int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
454{
455 const struct ath5k_ini_rfgain *ath5k_rfg;
456 unsigned int i, size;
457
458 switch (ah->ah_radio) {
459 case AR5K_RF5111:
460 ath5k_rfg = rfgain_5111;
462 break;
463 case AR5K_RF5112:
464 ath5k_rfg = rfgain_5112;
466 break;
467 case AR5K_RF2413:
468 ath5k_rfg = rfgain_2413;
470 break;
471 case AR5K_RF2316:
472 ath5k_rfg = rfgain_2316;
474 break;
475 case AR5K_RF5413:
476 ath5k_rfg = rfgain_5413;
478 break;
479 case AR5K_RF2317:
480 case AR5K_RF2425:
481 ath5k_rfg = rfgain_2425;
483 break;
484 default:
485 return -EINVAL;
486 }
487
488 switch (freq) {
491 break;
492 default:
493 return -EINVAL;
494 }
495
496 for (i = 0; i < size; i++) {
497 AR5K_REG_WAIT(i);
498 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
499 (u32)ath5k_rfg[i].rfg_register);
500 }
501
502 return 0;
503}
504
505
506
507/********************\
508* RF Registers setup *
509\********************/
510
511
512/*
513 * Setup RF registers by writing rf buffer on hw
514 */
516 unsigned int mode)
517{
518 const struct ath5k_rf_reg *rf_regs;
519 const struct ath5k_ini_rfbuffer *ini_rfb;
520 const struct ath5k_gain_opt *go = NULL;
521 const struct ath5k_gain_opt_step *g_step;
522 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
523 u8 ee_mode = 0;
524 u32 *rfb;
525 int obdb = -1, bank = -1;
526 unsigned i;
527
528 switch (ah->ah_radio) {
529 case AR5K_RF5111:
530 rf_regs = rf_regs_5111;
531 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
532 ini_rfb = rfb_5111;
533 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
534 go = &rfgain_opt_5111;
535 break;
536 case AR5K_RF5112:
537 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
538 rf_regs = rf_regs_5112a;
539 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
540 ini_rfb = rfb_5112a;
541 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
542 } else {
543 rf_regs = rf_regs_5112;
544 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
545 ini_rfb = rfb_5112;
546 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
547 }
548 go = &rfgain_opt_5112;
549 break;
550 case AR5K_RF2413:
551 rf_regs = rf_regs_2413;
552 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
553 ini_rfb = rfb_2413;
554 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
555 break;
556 case AR5K_RF2316:
557 rf_regs = rf_regs_2316;
558 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
559 ini_rfb = rfb_2316;
560 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
561 break;
562 case AR5K_RF5413:
563 rf_regs = rf_regs_5413;
564 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
565 ini_rfb = rfb_5413;
566 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
567 break;
568 case AR5K_RF2317:
569 rf_regs = rf_regs_2425;
570 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
571 ini_rfb = rfb_2317;
572 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
573 break;
574 case AR5K_RF2425:
575 rf_regs = rf_regs_2425;
576 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
577 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
578 ini_rfb = rfb_2425;
579 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
580 } else {
581 ini_rfb = rfb_2417;
582 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
583 }
584 break;
585 default:
586 return -EINVAL;
587 }
588
589 /* If it's the first time we set rf buffer, allocate
590 * ah->ah_rf_banks based on ah->ah_rf_banks_size
591 * we set above */
592 if (ah->ah_rf_banks == NULL) {
593 ah->ah_rf_banks = malloc(sizeof(u32) * ah->ah_rf_banks_size);
594 if (ah->ah_rf_banks == NULL) {
595 return -ENOMEM;
596 }
597 }
598
599 /* Copy values to modify them */
600 rfb = ah->ah_rf_banks;
601
602 for (i = 0; i < ah->ah_rf_banks_size; i++) {
603 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
604 DBG("ath5k: invalid RF register bank\n");
605 return -EINVAL;
606 }
607
608 /* Bank changed, write down the offset */
609 if (bank != ini_rfb[i].rfb_bank) {
610 bank = ini_rfb[i].rfb_bank;
611 ah->ah_offset[bank] = i;
612 }
613
614 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
615 }
616
617 /* Set Output and Driver bias current (OB/DB) */
618 if (channel->hw_value & CHANNEL_2GHZ) {
619
620 if (channel->hw_value & CHANNEL_CCK)
621 ee_mode = AR5K_EEPROM_MODE_11B;
622 else
623 ee_mode = AR5K_EEPROM_MODE_11G;
624
625 /* For RF511X/RF211X combination we
626 * use b_OB and b_DB parameters stored
627 * in eeprom on ee->ee_ob[ee_mode][0]
628 *
629 * For all other chips we use OB/DB for 2Ghz
630 * stored in the b/g modal section just like
631 * 802.11a on ee->ee_ob[ee_mode][1] */
632 if ((ah->ah_radio == AR5K_RF5111) ||
633 (ah->ah_radio == AR5K_RF5112))
634 obdb = 0;
635 else
636 obdb = 1;
637
638 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
639 AR5K_RF_OB_2GHZ, 1);
640
641 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
642 AR5K_RF_DB_2GHZ, 1);
643
644 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
645 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
646 (ah->ah_radio == AR5K_RF5111)) {
647
648 /* For 11a, Turbo and XR we need to choose
649 * OB/DB based on frequency range */
650 ee_mode = AR5K_EEPROM_MODE_11A;
651 obdb = channel->center_freq >= 5725 ? 3 :
652 (channel->center_freq >= 5500 ? 2 :
653 (channel->center_freq >= 5260 ? 1 :
654 (channel->center_freq > 4000 ? 0 : -1)));
655
656 if (obdb < 0)
657 return -EINVAL;
658
659 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
660 AR5K_RF_OB_5GHZ, 1);
661
662 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
663 AR5K_RF_DB_5GHZ, 1);
664 }
665
666 g_step = &go->go_step[ah->ah_gain.g_step_idx];
667
668 /* Bank Modifications (chip-specific) */
669 if (ah->ah_radio == AR5K_RF5111) {
670
671 /* Set gain_F settings according to current step */
672 if (channel->hw_value & CHANNEL_OFDM) {
673
676 g_step->gos_param[0]);
677
678 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
679 AR5K_RF_PWD_90, 1);
680
681 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
682 AR5K_RF_PWD_84, 1);
683
684 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
686
687 /* We programmed gain_F parameters, switch back
688 * to active state */
689 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
690
691 }
692
693 /* Bank 6/7 setup */
694
695 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
696 AR5K_RF_PWD_XPD, 1);
697
698 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
700
701 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
702 AR5K_RF_GAIN_I, 1);
703
704 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
705 AR5K_RF_PLO_SEL, 1);
706
707 /* TODO: Half/quarter channel support */
708 }
709
710 if (ah->ah_radio == AR5K_RF5112) {
711
712 /* Set gain_F settings according to current step */
713 if (channel->hw_value & CHANNEL_OFDM) {
714
715 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
717
718 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
719 AR5K_RF_PWD_138, 1);
720
721 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
722 AR5K_RF_PWD_137, 1);
723
724 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
725 AR5K_RF_PWD_136, 1);
726
727 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
728 AR5K_RF_PWD_132, 1);
729
730 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
731 AR5K_RF_PWD_131, 1);
732
733 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
734 AR5K_RF_PWD_130, 1);
735
736 /* We programmed gain_F parameters, switch back
737 * to active state */
738 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
739 }
740
741 /* Bank 6/7 setup */
742
743 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
744 AR5K_RF_XPD_SEL, 1);
745
746 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
747 /* Rev. 1 supports only one xpd */
748 ath5k_hw_rfb_op(ah, rf_regs,
749 ee->ee_x_gain[ee_mode],
751
752 } else {
753 /* TODO: Set high and low gain bits */
754 ath5k_hw_rfb_op(ah, rf_regs,
755 ee->ee_x_gain[ee_mode],
757 ath5k_hw_rfb_op(ah, rf_regs,
758 ee->ee_x_gain[ee_mode],
760
761 /* Lower synth voltage on Rev 2 */
762 ath5k_hw_rfb_op(ah, rf_regs, 2,
764
765 ath5k_hw_rfb_op(ah, rf_regs, 2,
767
768 ath5k_hw_rfb_op(ah, rf_regs, 2,
770
771 ath5k_hw_rfb_op(ah, rf_regs, 2,
772 AR5K_RF_PUSH_UP, 1);
773
774 /* Decrease power consumption on 5213+ BaseBand */
775 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
776 ath5k_hw_rfb_op(ah, rf_regs, 1,
777 AR5K_RF_PAD2GND, 1);
778
779 ath5k_hw_rfb_op(ah, rf_regs, 1,
780 AR5K_RF_XB2_LVL, 1);
781
782 ath5k_hw_rfb_op(ah, rf_regs, 1,
783 AR5K_RF_XB5_LVL, 1);
784
785 ath5k_hw_rfb_op(ah, rf_regs, 1,
786 AR5K_RF_PWD_167, 1);
787
788 ath5k_hw_rfb_op(ah, rf_regs, 1,
789 AR5K_RF_PWD_166, 1);
790 }
791 }
792
793 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
794 AR5K_RF_GAIN_I, 1);
795
796 /* TODO: Half/quarter channel support */
797
798 }
799
800 if (ah->ah_radio == AR5K_RF5413 &&
801 channel->hw_value & CHANNEL_2GHZ) {
802
804 1);
805
806 /* Set optimum value for early revisions (on pci-e chips) */
807 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
808 ah->ah_mac_srev < AR5K_SREV_AR5413)
809 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
811
812 }
813
814 /* Write RF banks on hw */
815 for (i = 0; i < ah->ah_rf_banks_size; i++) {
816 AR5K_REG_WAIT(i);
817 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
818 }
819
820 return 0;
821}
822
823
824/**************************\
825 PHY/RF channel functions
826\**************************/
827
828/*
829 * Check if a channel is supported
830 */
831int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
832{
833 /* Check if the channel is in our supported range */
834 if (flags & CHANNEL_2GHZ) {
835 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
836 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
837 return 1;
838 } else if (flags & CHANNEL_5GHZ)
839 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
840 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
841 return 1;
842
843 return 0;
844}
845
846/*
847 * Convertion needed for RF5110
848 */
850{
851 u32 athchan;
852
853 /*
854 * Convert IEEE channel/MHz to an internal channel value used
855 * by the AR5210 chipset. This has not been verified with
856 * newer chipsets like the AR5212A who have a completely
857 * different RF/PHY part.
858 */
859 athchan = (ath5k_hw_bitswap((ath5k_freq_to_channel(channel->center_freq)
860 - 24) / 2, 5) << 1)
861 | (1 << 6) | 0x1;
862 return athchan;
863}
864
865/*
866 * Set channel on RF5110
867 */
870{
871 u32 data;
872
873 /*
874 * Set the channel and wait
875 */
879 mdelay(1);
880
881 return 0;
882}
883
884/*
885 * Convertion needed for 5111
886 */
887static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
888 struct ath5k_athchan_2ghz *athchan)
889{
890 int channel;
891
892 /* Cast this value to catch negative channel numbers (>= -19) */
893 channel = (int)ieee;
894
895 /*
896 * Map 2GHz IEEE channel to 5GHz Atheros channel
897 */
898 if (channel <= 13) {
899 athchan->a2_athchan = 115 + channel;
900 athchan->a2_flags = 0x46;
901 } else if (channel == 14) {
902 athchan->a2_athchan = 124;
903 athchan->a2_flags = 0x44;
904 } else if (channel >= 15 && channel <= 26) {
905 athchan->a2_athchan = ((channel - 14) * 4) + 132;
906 athchan->a2_flags = 0x46;
907 } else
908 return -EINVAL;
909
910 return 0;
911}
912
913/*
914 * Set channel on 5111
915 */
918{
919 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
920 unsigned int ath5k_channel = ath5k_freq_to_channel(channel->center_freq);
921 u32 data0, data1, clock;
922 int ret;
923
924 /*
925 * Set the channel on the RF5111 radio
926 */
927 data0 = data1 = 0;
928
929 if (channel->hw_value & CHANNEL_2GHZ) {
930 /* Map 2GHz channel to 5GHz Atheros channel ID */
931 ret = ath5k_hw_rf5111_chan2athchan(ath5k_channel,
932 &ath5k_channel_2ghz);
933 if (ret)
934 return ret;
935
936 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
937 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
938 << 5) | (1 << 4);
939 }
940
941 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
942 clock = 1;
943 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
944 (clock << 1) | (1 << 10) | 1;
945 } else {
946 clock = 0;
947 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
948 << 2) | (clock << 1) | (1 << 10) | 1;
949 }
950
951 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
953 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
955
956 return 0;
957}
958
959/*
960 * Set channel on 5112 and newer
961 */
964{
966 u16 c;
967
968 data = data0 = data1 = data2 = 0;
969 c = channel->center_freq;
970
971 if (c < 4800) {
972 if (!((c - 2224) % 5)) {
973 data0 = ((2 * (c - 704)) - 3040) / 10;
974 data1 = 1;
975 } else if (!((c - 2192) % 5)) {
976 data0 = ((2 * (c - 672)) - 3040) / 10;
977 data1 = 0;
978 } else
979 return -EINVAL;
980
981 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
982 } else if ((c - (c % 5)) != 2 || c > 5435) {
983 if (!(c % 20) && c >= 5120) {
984 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
985 data2 = ath5k_hw_bitswap(3, 2);
986 } else if (!(c % 10)) {
987 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
988 data2 = ath5k_hw_bitswap(2, 2);
989 } else if (!(c % 5)) {
990 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
991 data2 = ath5k_hw_bitswap(1, 2);
992 } else
993 return -EINVAL;
994 } else {
995 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
996 data2 = ath5k_hw_bitswap(0, 2);
997 }
998
999 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1000
1003
1004 return 0;
1005}
1006
1007/*
1008 * Set the channel on the RF2425
1009 */
1011 struct net80211_channel *channel)
1012{
1013 u32 data, data0, data2;
1014 u16 c;
1015
1016 data = data0 = data2 = 0;
1017 c = channel->center_freq;
1018
1019 if (c < 4800) {
1020 data0 = ath5k_hw_bitswap((c - 2272), 8);
1021 data2 = 0;
1022 /* ? 5GHz ? */
1023 } else if ((c - (c % 5)) != 2 || c > 5435) {
1024 if (!(c % 20) && c < 5120)
1025 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1026 else if (!(c % 10))
1027 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1028 else if (!(c % 5))
1029 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1030 else
1031 return -EINVAL;
1032 data2 = ath5k_hw_bitswap(1, 2);
1033 } else {
1034 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1035 data2 = ath5k_hw_bitswap(0, 2);
1036 }
1037
1038 data = (data0 << 4) | data2 << 2 | 0x1001;
1039
1042
1043 return 0;
1044}
1045
1046/*
1047 * Set a channel on the radio chip
1048 */
1050{
1051 int ret;
1052 /*
1053 * Check bounds supported by the PHY (we don't care about regultory
1054 * restrictions at this point). Note: hw_value already has the band
1055 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1056 * of the band by that */
1057 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1058 DBG("ath5k: channel frequency (%d MHz) out of supported "
1059 "range\n", channel->center_freq);
1060 return -EINVAL;
1061 }
1062
1063 /*
1064 * Set the channel and wait
1065 */
1066 switch (ah->ah_radio) {
1067 case AR5K_RF5110:
1069 break;
1070 case AR5K_RF5111:
1072 break;
1073 case AR5K_RF2425:
1075 break;
1076 default:
1078 break;
1079 }
1080
1081 if (ret) {
1082 DBG("ath5k: setting channel failed: %s\n", strerror(ret));
1083 return ret;
1084 }
1085
1086 /* Set JAPAN setting for channel 14 */
1087 if (channel->center_freq == 2484) {
1090 } else {
1093 }
1094
1095 ah->ah_current_channel = channel;
1096 ah->ah_turbo = (channel->hw_value == CHANNEL_T ? 1 : 0);
1097
1098 return 0;
1099}
1100
1101/*****************\
1102 PHY calibration
1103\*****************/
1104
1105/**
1106 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1107 *
1108 * @ah: struct ath5k_hw pointer we are operating on
1109 * @freq: the channel frequency, just used for error logging
1110 *
1111 * This function performs a noise floor calibration of the PHY and waits for
1112 * it to complete. Then the noise floor value is compared to some maximum
1113 * noise floor we consider valid.
1114 *
1115 * Note that this is different from what the madwifi HAL does: it reads the
1116 * noise floor and afterwards initiates the calibration. Since the noise floor
1117 * calibration can take some time to finish, depending on the current channel
1118 * use, that avoids the occasional timeout warnings we are seeing now.
1119 *
1120 * See the following link for an Atheros patent on noise floor calibration:
1121 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1122 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1123 *
1124 * XXX: Since during noise floor calibration antennas are detached according to
1125 * the patent, we should stop tx queues here.
1126 */
1127int
1129{
1130 int ret;
1131 unsigned int i;
1132 s32 noise_floor;
1133
1134 /*
1135 * Enable noise floor calibration
1136 */
1139
1140 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1141 AR5K_PHY_AGCCTL_NF, 0, 0);
1142
1143 if (ret) {
1144 DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq);
1145 return -EAGAIN;
1146 }
1147
1148 /* Wait until the noise floor is calibrated and read the value */
1149 for (i = 20; i > 0; i--) {
1150 mdelay(1);
1151 noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1152 noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1153 if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1154 noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1155
1156 if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1157 break;
1158 }
1159 }
1160
1161 DBG2("ath5k: noise floor %d\n", noise_floor);
1162
1163 if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1164 DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq);
1165 return -EAGAIN;
1166 }
1167
1168 ah->ah_noise_floor = noise_floor;
1169
1170 return 0;
1171}
1172
1173/*
1174 * Perform a PHY calibration on RF5110
1175 * -Fix BPSK/QAM Constellation (I/Q correction)
1176 * -Calculate Noise Floor
1177 */
1179 struct net80211_channel *channel)
1180{
1181 u32 phy_sig, phy_agc, phy_sat, beacon;
1182 int ret;
1183
1184 /*
1185 * Disable beacons and RX/TX queues, wait
1186 */
1191
1192 mdelay(2);
1193
1194 /*
1195 * Set the channel (with AGC turned off)
1196 */
1198 udelay(10);
1199 ret = ath5k_hw_channel(ah, channel);
1200
1201 /*
1202 * Activate PHY and wait
1203 */
1205 mdelay(1);
1206
1208
1209 if (ret)
1210 return ret;
1211
1212 /*
1213 * Calibrate the radio chip
1214 */
1215
1216 /* Remember normal state */
1217 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1220
1221 /* Update radio registers */
1222 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1224
1229
1234
1235 udelay(20);
1236
1238 udelay(10);
1241
1242 mdelay(1);
1243
1244 /*
1245 * Enable calibration and wait until completion
1246 */
1248
1249 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1250 AR5K_PHY_AGCCTL_CAL, 0, 0);
1251
1252 /* Reset to normal state */
1256
1257 if (ret) {
1258 DBG("ath5k: calibration timeout (%d MHz)\n",
1259 channel->center_freq);
1260 return ret;
1261 }
1262
1264
1265 /*
1266 * Re-enable RX/TX and beacons
1267 */
1271
1272 return 0;
1273}
1274
1275/*
1276 * Perform a PHY calibration on RF5111/5112 and newer chips
1277 */
1279 struct net80211_channel *channel)
1280{
1281 u32 i_pwr, q_pwr;
1282 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1283 int i;
1284
1285 if (!ah->ah_calibration ||
1287 goto done;
1288
1289 /* Calibration has finished, get the results and re-run */
1290 for (i = 0; i <= 10; i++) {
1294 }
1295
1296 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1297 q_coffd = q_pwr >> 7;
1298
1299 /* No correction */
1300 if (i_coffd == 0 || q_coffd == 0)
1301 goto done;
1302
1303 i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1304
1305 /* Boundary check */
1306 if (i_coff > 31)
1307 i_coff = 31;
1308 if (i_coff < -32)
1309 i_coff = -32;
1310
1311 q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1312
1313 /* Boundary check */
1314 if (q_coff > 15)
1315 q_coff = 15;
1316 if (q_coff < -16)
1317 q_coff = -16;
1318
1319 /* Commit new I/Q value */
1321 ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1322
1323 /* Re-enable calibration -if we don't we'll commit
1324 * the same values again and again */
1328
1329done:
1330
1331 /* TODO: Separate noise floor calibration from I/Q calibration
1332 * since noise floor calibration interrupts rx path while I/Q
1333 * calibration doesn't. We don't need to run noise floor calibration
1334 * as often as I/Q calibration.*/
1336
1337 /* Initiate a gain_F calibration */
1339
1340 return 0;
1341}
1342
1343/*
1344 * Perform a PHY calibration
1345 */
1347 struct net80211_channel *channel)
1348{
1349 int ret;
1350
1351 if (ah->ah_radio == AR5K_RF5110)
1353 else
1355
1356 return ret;
1357}
1358
1360{
1362
1363 return 0;
1364}
1365
1366/********************\
1367 Misc PHY functions
1368\********************/
1369
1370/*
1371 * Get the PHY Chip revision
1372 */
1373u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1374{
1375 unsigned int i;
1376 u32 srev;
1377 u16 ret;
1378
1379 /*
1380 * Set the radio chip access register
1381 */
1382 switch (chan) {
1383 case CHANNEL_2GHZ:
1385 break;
1386 case CHANNEL_5GHZ:
1388 break;
1389 default:
1390 return 0;
1391 }
1392
1393 mdelay(2);
1394
1395 /* ...wait until PHY is ready and read the selected radio revision */
1396 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1397
1398 for (i = 0; i < 8; i++)
1399 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1400
1401 if (ah->ah_version == AR5K_AR5210) {
1402 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1403 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1404 } else {
1405 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1406 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1407 ((srev & 0x0f) << 4), 8);
1408 }
1409
1410 /* Reset to the 5GHz mode */
1412
1413 return ret;
1414}
1415
1416void /*TODO:Boundary check*/
1417ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
1418{
1419 if (ah->ah_version != AR5K_AR5210)
1421}
1422
1424{
1425 if (ah->ah_version != AR5K_AR5210)
1427
1428 return 0; /*XXX: What do we return for 5210 ?*/
1429}
1430
1431
1432/****************\
1433* TX power setup *
1434\****************/
1435
1436/*
1437 * Helper functions
1438 */
1439
1440/*
1441 * Do linear interpolation between two given (x, y) points
1442 */
1443static s16
1444ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1445 s16 y_left, s16 y_right)
1446{
1447 s16 ratio, result;
1448
1449 /* Avoid divide by zero and skip interpolation
1450 * if we have the same point */
1451 if ((x_left == x_right) || (y_left == y_right))
1452 return y_left;
1453
1454 /*
1455 * Since we use ints and not fps, we need to scale up in
1456 * order to get a sane ratio value (or else we 'll eg. get
1457 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1458 * to have some accuracy both for 0.5 and 0.25 steps.
1459 */
1460 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1461
1462 /* Now scale down to be in range */
1463 result = y_left + (ratio * (target - x_left) / 100);
1464
1465 return result;
1466}
1467
1468/*
1469 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1470 *
1471 * Since we have the top of the curve and we draw the line below
1472 * until we reach 1 (1 pcdac step) we need to know which point
1473 * (x value) that is so that we don't go below y axis and have negative
1474 * pcdac values when creating the curve, or fill the table with zeroes.
1475 */
1476static s16
1477ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1478 const s16 *pwrL, const s16 *pwrR)
1479{
1480 s8 tmp;
1481 s16 min_pwrL, min_pwrR;
1482 s16 pwr_i;
1483
1484 if (pwrL[0] == pwrL[1])
1485 min_pwrL = pwrL[0];
1486 else {
1487 pwr_i = pwrL[0];
1488 do {
1489 pwr_i--;
1491 pwrL[0], pwrL[1],
1492 stepL[0], stepL[1]);
1493 } while (tmp > 1);
1494
1495 min_pwrL = pwr_i;
1496 }
1497
1498 if (pwrR[0] == pwrR[1])
1499 min_pwrR = pwrR[0];
1500 else {
1501 pwr_i = pwrR[0];
1502 do {
1503 pwr_i--;
1505 pwrR[0], pwrR[1],
1506 stepR[0], stepR[1]);
1507 } while (tmp > 1);
1508
1509 min_pwrR = pwr_i;
1510 }
1511
1512 /* Keep the right boundary so that it works for both curves */
1513 return max(min_pwrL, min_pwrR);
1514}
1515
1516/*
1517 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1518 * Power to PCDAC curve.
1519 *
1520 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1521 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1522 * PCDAC/PDADC step for each curve is 64 but we can write more than
1523 * one curves on hw so we can go up to 128 (which is the max step we
1524 * can write on the final table).
1525 *
1526 * We write y values (PCDAC/PDADC steps) on hw.
1527 */
1528static void
1530 const s16 *pwr, const u8 *vpd,
1531 u8 num_points,
1532 u8 *vpd_table, u8 type)
1533{
1534 u8 idx[2] = { 0, 1 };
1535 s16 pwr_i = 2*pmin;
1536 int i;
1537
1538 if (num_points < 2)
1539 return;
1540
1541 /* We want the whole line, so adjust boundaries
1542 * to cover the entire power range. Note that
1543 * power values are already 0.25dB so no need
1544 * to multiply pwr_i by 2 */
1546 pwr_i = pmin;
1547 pmin = 0;
1548 pmax = 63;
1549 }
1550
1551 /* Find surrounding turning points (TPs)
1552 * and interpolate between them */
1553 for (i = 0; (i <= (u16) (pmax - pmin)) &&
1554 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1555
1556 /* We passed the right TP, move to the next set of TPs
1557 * if we pass the last TP, extrapolate above using the last
1558 * two TPs for ratio */
1559 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1560 idx[0]++;
1561 idx[1]++;
1562 }
1563
1564 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1565 pwr[idx[0]], pwr[idx[1]],
1566 vpd[idx[0]], vpd[idx[1]]);
1567
1568 /* Increase by 0.5dB
1569 * (0.25 dB units) */
1570 pwr_i += 2;
1571 }
1572}
1573
1574/*
1575 * Get the surrounding per-channel power calibration piers
1576 * for a given frequency so that we can interpolate between
1577 * them and come up with an apropriate dataset for our current
1578 * channel.
1579 */
1580static void
1582 struct net80211_channel *channel,
1583 struct ath5k_chan_pcal_info **pcinfo_l,
1584 struct ath5k_chan_pcal_info **pcinfo_r)
1585{
1586 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1587 struct ath5k_chan_pcal_info *pcinfo;
1588 u8 idx_l, idx_r;
1589 u8 mode, max, i;
1590 u32 target = channel->center_freq;
1591
1592 idx_l = 0;
1593 idx_r = 0;
1594
1595 if (!(channel->hw_value & CHANNEL_OFDM)) {
1596 pcinfo = ee->ee_pwr_cal_b;
1598 } else if (channel->hw_value & CHANNEL_2GHZ) {
1599 pcinfo = ee->ee_pwr_cal_g;
1601 } else {
1602 pcinfo = ee->ee_pwr_cal_a;
1604 }
1605 max = ee->ee_n_piers[mode] - 1;
1606
1607 /* Frequency is below our calibrated
1608 * range. Use the lowest power curve
1609 * we have */
1610 if (target < pcinfo[0].freq) {
1611 idx_l = idx_r = 0;
1612 goto done;
1613 }
1614
1615 /* Frequency is above our calibrated
1616 * range. Use the highest power curve
1617 * we have */
1618 if (target > pcinfo[max].freq) {
1619 idx_l = idx_r = max;
1620 goto done;
1621 }
1622
1623 /* Frequency is inside our calibrated
1624 * channel range. Pick the surrounding
1625 * calibration piers so that we can
1626 * interpolate */
1627 for (i = 0; i <= max; i++) {
1628
1629 /* Frequency matches one of our calibration
1630 * piers, no need to interpolate, just use
1631 * that calibration pier */
1632 if (pcinfo[i].freq == target) {
1633 idx_l = idx_r = i;
1634 goto done;
1635 }
1636
1637 /* We found a calibration pier that's above
1638 * frequency, use this pier and the previous
1639 * one to interpolate */
1640 if (target < pcinfo[i].freq) {
1641 idx_r = i;
1642 idx_l = idx_r - 1;
1643 goto done;
1644 }
1645 }
1646
1647done:
1648 *pcinfo_l = &pcinfo[idx_l];
1649 *pcinfo_r = &pcinfo[idx_r];
1650
1651 return;
1652}
1653
1654/*
1655 * Get the surrounding per-rate power calibration data
1656 * for a given frequency and interpolate between power
1657 * values to set max target power supported by hw for
1658 * each rate.
1659 */
1660static void
1662 struct net80211_channel *channel,
1664{
1665 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1666 struct ath5k_rate_pcal_info *rpinfo;
1667 u8 idx_l, idx_r;
1668 u8 mode, max, i;
1669 u32 target = channel->center_freq;
1670
1671 idx_l = 0;
1672 idx_r = 0;
1673
1674 if (!(channel->hw_value & CHANNEL_OFDM)) {
1675 rpinfo = ee->ee_rate_tpwr_b;
1677 } else if (channel->hw_value & CHANNEL_2GHZ) {
1678 rpinfo = ee->ee_rate_tpwr_g;
1680 } else {
1681 rpinfo = ee->ee_rate_tpwr_a;
1683 }
1684 max = ee->ee_rate_target_pwr_num[mode] - 1;
1685
1686 /* Get the surrounding calibration
1687 * piers - same as above */
1688 if (target < rpinfo[0].freq) {
1689 idx_l = idx_r = 0;
1690 goto done;
1691 }
1692
1693 if (target > rpinfo[max].freq) {
1694 idx_l = idx_r = max;
1695 goto done;
1696 }
1697
1698 for (i = 0; i <= max; i++) {
1699
1700 if (rpinfo[i].freq == target) {
1701 idx_l = idx_r = i;
1702 goto done;
1703 }
1704
1705 if (target < rpinfo[i].freq) {
1706 idx_r = i;
1707 idx_l = idx_r - 1;
1708 goto done;
1709 }
1710 }
1711
1712done:
1713 /* Now interpolate power value, based on the frequency */
1714 rates->freq = target;
1715
1716 rates->target_power_6to24 =
1717 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1718 rpinfo[idx_r].freq,
1719 rpinfo[idx_l].target_power_6to24,
1720 rpinfo[idx_r].target_power_6to24);
1721
1722 rates->target_power_36 =
1723 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1724 rpinfo[idx_r].freq,
1725 rpinfo[idx_l].target_power_36,
1726 rpinfo[idx_r].target_power_36);
1727
1728 rates->target_power_48 =
1729 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1730 rpinfo[idx_r].freq,
1731 rpinfo[idx_l].target_power_48,
1732 rpinfo[idx_r].target_power_48);
1733
1734 rates->target_power_54 =
1735 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1736 rpinfo[idx_r].freq,
1737 rpinfo[idx_l].target_power_54,
1738 rpinfo[idx_r].target_power_54);
1739}
1740
1741/*
1742 * Get the max edge power for this channel if
1743 * we have such data from EEPROM's Conformance Test
1744 * Limits (CTL), and limit max power if needed.
1745 *
1746 * FIXME: Only works for world regulatory domains
1747 */
1748static void
1750 struct net80211_channel *channel)
1751{
1752 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1753 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
1754 u8 *ctl_val = ee->ee_ctl;
1755 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
1756 s16 edge_pwr = 0;
1757 u8 rep_idx;
1758 u8 i, ctl_mode;
1759 u8 ctl_idx = 0xFF;
1760 u32 target = channel->center_freq;
1761
1762 /* Find out a CTL for our mode that's not mapped
1763 * on a specific reg domain.
1764 *
1765 * TODO: Map our current reg domain to one of the 3 available
1766 * reg domain ids so that we can support more CTLs. */
1767 switch (channel->hw_value & CHANNEL_MODES) {
1768 case CHANNEL_A:
1770 break;
1771 case CHANNEL_G:
1773 break;
1774 case CHANNEL_B:
1776 break;
1777 case CHANNEL_T:
1779 break;
1780 case CHANNEL_TG:
1782 break;
1783 case CHANNEL_XR:
1784 /* Fall through */
1785 default:
1786 return;
1787 }
1788
1789 for (i = 0; i < ee->ee_ctls; i++) {
1790 if (ctl_val[i] == ctl_mode) {
1791 ctl_idx = i;
1792 break;
1793 }
1794 }
1795
1796 /* If we have a CTL dataset available grab it and find the
1797 * edge power for our frequency */
1798 if (ctl_idx == 0xFF)
1799 return;
1800
1801 /* Edge powers are sorted by frequency from lower
1802 * to higher. Each CTL corresponds to 8 edge power
1803 * measurements. */
1804 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
1805
1806 /* Don't do boundaries check because we
1807 * might have more that one bands defined
1808 * for this mode */
1809
1810 /* Get the edge power that's closer to our
1811 * frequency */
1812 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
1813 rep_idx += i;
1814 if (target <= rep[rep_idx].freq)
1815 edge_pwr = (s16) rep[rep_idx].edge;
1816 }
1817
1818 if (edge_pwr) {
1819 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
1820 }
1821}
1822
1823
1824/*
1825 * Power to PCDAC table functions
1826 */
1827
1828/*
1829 * Fill Power to PCDAC table on RF5111
1830 *
1831 * No further processing is needed for RF5111, the only thing we have to
1832 * do is fill the values below and above calibration range since eeprom data
1833 * may not cover the entire PCDAC table.
1834 */
1835static void
1837 s16 *table_max)
1838{
1839 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1840 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
1841 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
1842 s16 min_pwr, max_pwr;
1843
1844 /* Get table boundaries */
1845 min_pwr = table_min[0];
1846 pcdac_0 = pcdac_tmp[0];
1847
1848 max_pwr = table_max[0];
1849 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
1850
1851 /* Extrapolate below minimum using pcdac_0 */
1852 pcdac_i = 0;
1853 for (i = 0; i < min_pwr; i++)
1854 pcdac_out[pcdac_i++] = pcdac_0;
1855
1856 /* Copy values from pcdac_tmp */
1857 pwr_idx = min_pwr;
1858 for (i = 0 ; pwr_idx <= max_pwr &&
1859 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
1860 pcdac_out[pcdac_i++] = pcdac_tmp[i];
1861 pwr_idx++;
1862 }
1863
1864 /* Extrapolate above maximum */
1865 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
1866 pcdac_out[pcdac_i++] = pcdac_n;
1867
1868}
1869
1870/*
1871 * Combine available XPD Curves and fill Linear Power to PCDAC table
1872 * on RF5112
1873 *
1874 * RFX112 can have up to 2 curves (one for low txpower range and one for
1875 * higher txpower range). We need to put them both on pcdac_out and place
1876 * them in the correct location. In case we only have one curve available
1877 * just fit it on pcdac_out (it's supposed to cover the entire range of
1878 * available pwr levels since it's always the higher power curve). Extrapolate
1879 * below and above final table if needed.
1880 */
1881static void
1883 s16 *table_max, u8 pdcurves)
1884{
1885 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1886 u8 *pcdac_low_pwr;
1887 u8 *pcdac_high_pwr;
1888 u8 *pcdac_tmp;
1889 u8 pwr;
1890 s16 max_pwr_idx;
1891 s16 min_pwr_idx;
1892 s16 mid_pwr_idx = 0;
1893 /* Edge flag turs on the 7nth bit on the PCDAC
1894 * to delcare the higher power curve (force values
1895 * to be greater than 64). If we only have one curve
1896 * we don't need to set this, if we have 2 curves and
1897 * fill the table backwards this can also be used to
1898 * switch from higher power curve to lower power curve */
1899 u8 edge_flag;
1900 int i;
1901
1902 /* When we have only one curve available
1903 * that's the higher power curve. If we have
1904 * two curves the first is the high power curve
1905 * and the next is the low power curve. */
1906 if (pdcurves > 1) {
1907 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
1908 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1909 mid_pwr_idx = table_max[1] - table_min[1] - 1;
1910 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1911
1912 /* If table size goes beyond 31.5dB, keep the
1913 * upper 31.5dB range when setting tx power.
1914 * Note: 126 = 31.5 dB in quarter dB steps */
1915 if (table_max[0] - table_min[1] > 126)
1916 min_pwr_idx = table_max[0] - 126;
1917 else
1918 min_pwr_idx = table_min[1];
1919
1920 /* Since we fill table backwards
1921 * start from high power curve */
1922 pcdac_tmp = pcdac_high_pwr;
1923
1924 edge_flag = 0x40;
1925 } else {
1926 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
1927 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1928 min_pwr_idx = table_min[0];
1929 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1930 pcdac_tmp = pcdac_high_pwr;
1931 edge_flag = 0;
1932 }
1933
1934 /* This is used when setting tx power*/
1935 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
1936
1937 /* Fill Power to PCDAC table backwards */
1938 pwr = max_pwr_idx;
1939 for (i = 63; i >= 0; i--) {
1940 /* Entering lower power range, reset
1941 * edge flag and set pcdac_tmp to lower
1942 * power curve.*/
1943 if (edge_flag == 0x40 &&
1944 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
1945 edge_flag = 0x00;
1946 pcdac_tmp = pcdac_low_pwr;
1947 pwr = mid_pwr_idx/2;
1948 }
1949
1950 /* Don't go below 1, extrapolate below if we have
1951 * already swithced to the lower power curve -or
1952 * we only have one curve and edge_flag is zero
1953 * anyway */
1954 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
1955 while (i >= 0) {
1956 pcdac_out[i] = pcdac_out[i + 1];
1957 i--;
1958 }
1959 break;
1960 }
1961
1962 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
1963
1964 /* Extrapolate above if pcdac is greater than
1965 * 126 -this can happen because we OR pcdac_out
1966 * value with edge_flag on high power curve */
1967 if (pcdac_out[i] > 126)
1968 pcdac_out[i] = 126;
1969
1970 /* Decrease by a 0.5dB step */
1971 pwr--;
1972 }
1973}
1974
1975/* Write PCDAC values on hw */
1976static void
1978{
1979 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1980 int i;
1981
1982 /*
1983 * Write TX power values
1984 */
1985 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
1987 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
1988 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
1990 }
1991}
1992
1993
1994/*
1995 * Power to PDADC table functions
1996 */
1997
1998/*
1999 * Set the gain boundaries and create final Power to PDADC table
2000 *
2001 * We can have up to 4 pd curves, we need to do a simmilar process
2002 * as we do for RF5112. This time we don't have an edge_flag but we
2003 * set the gain boundaries on a separate register.
2004 */
2005static void
2007 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2008{
2009 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2010 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2011 u8 *pdadc_tmp;
2012 s16 pdadc_0;
2013 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2014 u8 pd_gain_overlap;
2015
2016 /* Note: Register value is initialized on initvals
2017 * there is no feedback from hw.
2018 * XXX: What about pd_gain_overlap from EEPROM ? */
2019 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2021
2022 /* Create final PDADC table */
2023 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2024 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2025
2026 if (pdg == pdcurves - 1)
2027 /* 2 dB boundary stretch for last
2028 * (higher power) curve */
2029 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2030 else
2031 /* Set gain boundary in the middle
2032 * between this curve and the next one */
2033 gain_boundaries[pdg] =
2034 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2035
2036 /* Sanity check in case our 2 db stretch got out of
2037 * range. */
2038 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2039 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2040
2041 /* For the first curve (lower power)
2042 * start from 0 dB */
2043 if (pdg == 0)
2044 pdadc_0 = 0;
2045 else
2046 /* For the other curves use the gain overlap */
2047 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2048 pd_gain_overlap;
2049
2050 /* Force each power step to be at least 0.5 dB */
2051 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2052 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2053 else
2054 pwr_step = 1;
2055
2056 /* If pdadc_0 is negative, we need to extrapolate
2057 * below this pdgain by a number of pwr_steps */
2058 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2059 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2060 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2061 pdadc_0++;
2062 }
2063
2064 /* Set last pwr level, using gain boundaries */
2065 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2066 /* Limit it to be inside pwr range */
2067 table_size = pwr_max[pdg] - pwr_min[pdg];
2068 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2069
2070 /* Fill pdadc_out table */
2071 while (pdadc_0 < max_idx)
2072 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2073
2074 /* Need to extrapolate above this pdgain? */
2075 if (pdadc_n <= max_idx)
2076 continue;
2077
2078 /* Force each power step to be at least 0.5 dB */
2079 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2080 pwr_step = pdadc_tmp[table_size - 1] -
2081 pdadc_tmp[table_size - 2];
2082 else
2083 pwr_step = 1;
2084
2085 /* Extrapolate above */
2086 while ((pdadc_0 < (s16) pdadc_n) &&
2087 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2088 s16 tmp = pdadc_tmp[table_size - 1] +
2089 (pdadc_0 - max_idx) * pwr_step;
2090 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2091 pdadc_0++;
2092 }
2093 }
2094
2095 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2096 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2097 pdg++;
2098 }
2099
2100 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2101 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2102 pdadc_i++;
2103 }
2104
2105 /* Set gain boundaries */
2107 AR5K_REG_SM(pd_gain_overlap,
2109 AR5K_REG_SM(gain_boundaries[0],
2111 AR5K_REG_SM(gain_boundaries[1],
2113 AR5K_REG_SM(gain_boundaries[2],
2115 AR5K_REG_SM(gain_boundaries[3],
2118
2119 /* Used for setting rate power table */
2120 ah->ah_txpower.txp_min_idx = pwr_min[0];
2121
2122}
2123
2124/* Write PDADC values on hw */
2125static void
2127 u8 pdcurves, u8 *pdg_to_idx)
2128{
2129 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2130 u32 reg;
2131 u8 i;
2132
2133 /* Select the right pdgain curves */
2134
2135 /* Clear current settings */
2141
2142 /*
2143 * Use pd_gains curve from eeprom
2144 *
2145 * This overrides the default setting from initvals
2146 * in case some vendors (e.g. Zcomax) don't use the default
2147 * curves. If we don't honor their settings we 'll get a
2148 * 5dB (1 * gain overlap ?) drop.
2149 */
2151
2152 switch (pdcurves) {
2153 case 3:
2154 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2155 /* Fall through */
2156 case 2:
2157 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2158 /* Fall through */
2159 case 1:
2160 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2161 break;
2162 }
2164
2165 /*
2166 * Write TX power values
2167 */
2168 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2170 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2171 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2172 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2173 ((pdadc_out[4*i + 3] & 0xff) << 24),
2175 }
2176}
2177
2178
2179/*
2180 * Common code for PCDAC/PDADC tables
2181 */
2182
2183/*
2184 * This is the main function that uses all of the above
2185 * to set PCDAC/PDADC table on hw for the current channel.
2186 * This table is used for tx power calibration on the basband,
2187 * without it we get weird tx power levels and in some cases
2188 * distorted spectral mask
2189 */
2190static int
2192 struct net80211_channel *channel,
2193 u8 ee_mode, u8 type)
2194{
2195 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2196 struct ath5k_chan_pcal_info *pcinfo_L;
2197 struct ath5k_chan_pcal_info *pcinfo_R;
2198 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2199 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2200 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2201 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2202 u8 *tmpL;
2203 u8 *tmpR;
2204 u32 target = channel->center_freq;
2205 int pdg, i;
2206
2207 /* Get surounding freq piers for this channel */
2209 &pcinfo_L,
2210 &pcinfo_R);
2211
2212 /* Loop over pd gain curves on
2213 * surounding freq piers by index */
2214 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2215
2216 /* Fill curves in reverse order
2217 * from lower power (max gain)
2218 * to higher power. Use curve -> idx
2219 * backmaping we did on eeprom init */
2220 u8 idx = pdg_curve_to_idx[pdg];
2221
2222 /* Grab the needed curves by index */
2223 pdg_L = &pcinfo_L->pd_curves[idx];
2224 pdg_R = &pcinfo_R->pd_curves[idx];
2225
2226 /* Initialize the temp tables */
2227 tmpL = ah->ah_txpower.tmpL[pdg];
2228 tmpR = ah->ah_txpower.tmpR[pdg];
2229
2230 /* Set curve's x boundaries and create
2231 * curves so that they cover the same
2232 * range (if we don't do that one table
2233 * will have values on some range and the
2234 * other one won't have any so interpolation
2235 * will fail) */
2236 table_min[pdg] = min(pdg_L->pd_pwr[0],
2237 pdg_R->pd_pwr[0]) / 2;
2238
2239 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2240 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2241
2242 /* Now create the curves on surrounding channels
2243 * and interpolate if needed to get the final
2244 * curve for this gain on this channel */
2245 switch (type) {
2247 /* Override min/max so that we don't loose
2248 * accuracy (don't divide by 2) */
2249 table_min[pdg] = min(pdg_L->pd_pwr[0],
2250 pdg_R->pd_pwr[0]);
2251
2252 table_max[pdg] =
2253 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2254 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2255
2256 /* Override minimum so that we don't get
2257 * out of bounds while extrapolating
2258 * below. Don't do this when we have 2
2259 * curves and we are on the high power curve
2260 * because table_min is ok in this case */
2261 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2262
2263 table_min[pdg] =
2265 pdg_R->pd_step,
2266 pdg_L->pd_pwr,
2267 pdg_R->pd_pwr);
2268
2269 /* Don't go too low because we will
2270 * miss the upper part of the curve.
2271 * Note: 126 = 31.5dB (max power supported)
2272 * in 0.25dB units */
2273 if (table_max[pdg] - table_min[pdg] > 126)
2274 table_min[pdg] = table_max[pdg] - 126;
2275 }
2276
2277 /* Fall through */
2280
2281 ath5k_create_power_curve(table_min[pdg],
2282 table_max[pdg],
2283 pdg_L->pd_pwr,
2284 pdg_L->pd_step,
2285 pdg_L->pd_points, tmpL, type);
2286
2287 /* We are in a calibration
2288 * pier, no need to interpolate
2289 * between freq piers */
2290 if (pcinfo_L == pcinfo_R)
2291 continue;
2292
2293 ath5k_create_power_curve(table_min[pdg],
2294 table_max[pdg],
2295 pdg_R->pd_pwr,
2296 pdg_R->pd_step,
2297 pdg_R->pd_points, tmpR, type);
2298 break;
2299 default:
2300 return -EINVAL;
2301 }
2302
2303 /* Interpolate between curves
2304 * of surounding freq piers to
2305 * get the final curve for this
2306 * pd gain. Re-use tmpL for interpolation
2307 * output */
2308 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2309 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2310 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2311 (s16) pcinfo_L->freq,
2312 (s16) pcinfo_R->freq,
2313 (s16) tmpL[i],
2314 (s16) tmpR[i]);
2315 }
2316 }
2317
2318 /* Now we have a set of curves for this
2319 * channel on tmpL (x range is table_max - table_min
2320 * and y values are tmpL[pdg][]) sorted in the same
2321 * order as EEPROM (because we've used the backmaping).
2322 * So for RF5112 it's from higher power to lower power
2323 * and for RF2413 it's from lower power to higher power.
2324 * For RF5111 we only have one curve. */
2325
2326 /* Fill min and max power levels for this
2327 * channel by interpolating the values on
2328 * surounding channels to complete the dataset */
2329 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2330 (s16) pcinfo_L->freq,
2331 (s16) pcinfo_R->freq,
2332 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2333
2334 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2335 (s16) pcinfo_L->freq,
2336 (s16) pcinfo_R->freq,
2337 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2338
2339 /* We are ready to go, fill PCDAC/PDADC
2340 * table and write settings on hardware */
2341 switch (type) {
2343 /* For RF5112 we can have one or two curves
2344 * and each curve covers a certain power lvl
2345 * range so we need to do some more processing */
2346 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2347 ee->ee_pd_gains[ee_mode]);
2348
2349 /* Set txp.offset so that we can
2350 * match max power value with max
2351 * table index */
2352 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2353
2354 /* Write settings on hw */
2356 break;
2358 /* We are done for RF5111 since it has only
2359 * one curve, just fit the curve on the table */
2360 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2361
2362 /* No rate powertable adjustment for RF5111 */
2363 ah->ah_txpower.txp_min_idx = 0;
2364 ah->ah_txpower.txp_offset = 0;
2365
2366 /* Write settings on hw */
2368 break;
2370 /* Set PDADC boundaries and fill
2371 * final PDADC table */
2372 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2373 ee->ee_pd_gains[ee_mode]);
2374
2375 /* Write settings on hw */
2376 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2377
2378 /* Set txp.offset, note that table_min
2379 * can be negative */
2380 ah->ah_txpower.txp_offset = table_min[0];
2381 break;
2382 default:
2383 return -EINVAL;
2384 }
2385
2386 return 0;
2387}
2388
2389
2390/*
2391 * Per-rate tx power setting
2392 *
2393 * This is the code that sets the desired tx power (below
2394 * maximum) on hw for each rate (we also have TPC that sets
2395 * power per packet). We do that by providing an index on the
2396 * PCDAC/PDADC table we set up.
2397 */
2398
2399/*
2400 * Set rate power table
2401 *
2402 * For now we only limit txpower based on maximum tx power
2403 * supported by hw (what's inside rate_info). We need to limit
2404 * this even more, based on regulatory domain etc.
2405 *
2406 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2407 * and is indexed as follows:
2408 * rates[0] - rates[7] -> OFDM rates
2409 * rates[8] - rates[14] -> CCK rates
2410 * rates[15] -> XR rates (they all have the same power)
2411 */
2412static void
2414 struct ath5k_rate_pcal_info *rate_info,
2415 u8 ee_mode)
2416{
2417 unsigned int i;
2418 u16 *rates;
2419
2420 /* max_pwr is power level we got from driver/user in 0.5dB
2421 * units, switch to 0.25dB units so we can compare */
2422 max_pwr *= 2;
2423 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2424
2425 /* apply rate limits */
2426 rates = ah->ah_txpower.txp_rates_power_table;
2427
2428 /* OFDM rates 6 to 24Mb/s */
2429 for (i = 0; i < 5; i++)
2430 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2431
2432 /* Rest OFDM rates */
2433 rates[5] = min(rates[0], rate_info->target_power_36);
2434 rates[6] = min(rates[0], rate_info->target_power_48);
2435 rates[7] = min(rates[0], rate_info->target_power_54);
2436
2437 /* CCK rates */
2438 /* 1L */
2439 rates[8] = min(rates[0], rate_info->target_power_6to24);
2440 /* 2L */
2441 rates[9] = min(rates[0], rate_info->target_power_36);
2442 /* 2S */
2443 rates[10] = min(rates[0], rate_info->target_power_36);
2444 /* 5L */
2445 rates[11] = min(rates[0], rate_info->target_power_48);
2446 /* 5S */
2447 rates[12] = min(rates[0], rate_info->target_power_48);
2448 /* 11L */
2449 rates[13] = min(rates[0], rate_info->target_power_54);
2450 /* 11S */
2451 rates[14] = min(rates[0], rate_info->target_power_54);
2452
2453 /* XR rates */
2454 rates[15] = min(rates[0], rate_info->target_power_6to24);
2455
2456 /* CCK rates have different peak to average ratio
2457 * so we have to tweak their power so that gainf
2458 * correction works ok. For this we use OFDM to
2459 * CCK delta from eeprom */
2460 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2461 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2462 for (i = 8; i <= 15; i++)
2463 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2464
2465 ah->ah_txpower.txp_min_pwr = rates[7];
2466 ah->ah_txpower.txp_max_pwr = rates[0];
2467 ah->ah_txpower.txp_ofdm = rates[7];
2468}
2469
2470
2471/*
2472 * Set transmition power
2473 */
2474int
2476 u8 ee_mode, u8 txpower)
2477{
2478 struct ath5k_rate_pcal_info rate_info;
2479 u8 type;
2480 int ret;
2481
2482 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2483 DBG("ath5k: invalid tx power %d\n", txpower);
2484 return -EINVAL;
2485 }
2486 if (txpower == 0)
2487 txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2488
2489 /* Reset TX power values */
2490 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2491 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2492 ah->ah_txpower.txp_min_pwr = 0;
2493 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2494
2495 /* Initialize TX power table */
2496 switch (ah->ah_radio) {
2497 case AR5K_RF5111:
2499 break;
2500 case AR5K_RF5112:
2502 break;
2503 case AR5K_RF2413:
2504 case AR5K_RF5413:
2505 case AR5K_RF2316:
2506 case AR5K_RF2317:
2507 case AR5K_RF2425:
2509 break;
2510 default:
2511 return -EINVAL;
2512 }
2513
2514 /* FIXME: Only on channel/mode change */
2516 if (ret)
2517 return ret;
2518
2519 /* Limit max power if we have a CTL available */
2521
2522 /* FIXME: Tx power limit for this regdomain
2523 * XXX: Mac80211/CRDA will do that anyway ? */
2524
2525 /* FIXME: Antenna reduction stuff */
2526
2527 /* FIXME: Limit power on turbo modes */
2528
2529 /* FIXME: TPC scale reduction */
2530
2531 /* Get surounding channels for per-rate power table
2532 * calibration */
2533 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2534
2535 /* Setup rate power table */
2536 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2537
2538 /* Write rate power table on hw */
2540 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2542
2544 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2546
2548 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2550
2552 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2554
2555 /* FIXME: TPC support */
2556 if (ah->ah_txpower.txp_tpc) {
2559
2564 AR5K_TPC);
2565 } else {
2568 }
2569
2570 return 0;
2571}
2572
2574{
2575 struct net80211_channel *channel = ah->ah_current_channel;
2576
2577 DBG2("ath5k: changing txpower to %d\n", txpower);
2578
2579 return ath5k_hw_txpower(ah, channel, mode, txpower);
2580}
2581
2582#undef _ATH5K_PHY
#define NULL
NULL pointer (VOID *)
Definition Base.h:322
u32 data1
Definition ar9003_mac.h:4
u32 data0
Definition ar9003_mac.h:2
u32 data2
Definition ar9003_mac.h:6
uint16_t result
Definition hyperv.h:33
long index
Definition bigint.h:65
#define AR5K_EEPROM_N_EDGES
Definition eeprom.h:191
#define AR5K_EEPROM_POWER_TABLE_SIZE
Definition eeprom.h:217
#define AR5K_EEPROM_MODE_11A
Definition eeprom.h:64
@ AR5K_CTL_11G
Definition eeprom.h:243
@ AR5K_CTL_11B
Definition eeprom.h:242
@ AR5K_CTL_TURBOG
Definition eeprom.h:245
@ AR5K_CTL_11A
Definition eeprom.h:241
@ AR5K_CTL_TURBO
Definition eeprom.h:244
#define AR5K_EEPROM_N_PD_GAINS
Definition eeprom.h:209
#define AR5K_EEPROM_MODE_11B
Definition eeprom.h:65
#define AR5K_EEPROM_MODE_11G
Definition eeprom.h:66
#define AR5K_CTL_NO_REGDOMAIN
Definition eeprom.h:271
@ AR5K_PWRTABLE_LINEAR_PCDAC
Definition eeprom.h:316
@ AR5K_PWRTABLE_PWR_TO_PCDAC
Definition eeprom.h:315
@ AR5K_PWRTABLE_PWR_TO_PDADC
Definition eeprom.h:317
#define AR5K_PHY_TPC_RG1_PDGAIN_2
Definition reg.h:2552
#define AR5K_PHY_IQ_RUN
Definition reg.h:2192
#define AR5K_PHY_IQ
Definition reg.h:2185
#define AR5K_TPC_ACK
Definition reg.h:1555
#define AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2
Definition reg.h:2562
#define AR5K_DIAG_SW_DIS_RX_5210
Definition reg.h:1395
#define AR5K_PHY_TXPOWER_RATE4
Definition reg.h:2261
#define AR5K_PHY_IQ_CORR_Q_I_COFF_S
Definition reg.h:2188
#define AR5K_PHY_AGCCTL_CAL
Definition reg.h:2024
#define AR5K_PHY_SHIFT_2GHZ
Definition reg.h:1878
#define AR5K_PHY_PAPD_PROBE_TYPE
Definition reg.h:2243
#define AR5K_PHY_NF
Definition reg.h:2032
#define AR5K_RF_BUFFER_CONTROL_3
Definition reg.h:2125
#define AR5K_PHY_RFSTG
Definition reg.h:2144
#define AR5K_PHY_AGCCTL_NF
Definition reg.h:2025
#define AR5K_TPC_CHIRP
Definition reg.h:1559
#define AR5K_PHY_TXPOWER_RATE3
Definition reg.h:2260
#define AR5K_PHY_IQ_CAL_NUM_LOG_MAX
Definition reg.h:2190
#define AR5K_PHY_ACT_ENABLE
Definition reg.h:1928
#define AR5K_PHY_FRAME_CTL_TX_CLIP
Definition reg.h:2271
#define AR5K_BEACON_ENABLE
Definition reg.h:1243
#define AR5K_PHY_AGCCTL
Definition reg.h:2023
#define AR5K_PHY_TXPOWER_RATE1
Definition reg.h:2256
#define AR5K_PHY_TPC_RG1_PDGAIN_3
Definition reg.h:2554
#define AR5K_PHY_ADCSAT_THR
Definition reg.h:2049
#define AR5K_PHY_PAPD_PROBE_TYPE_CCK
Definition reg.h:2247
#define AR5K_PHY_ACT
Definition reg.h:1927
#define AR5K_PHY_TPC_RG1_NUM_PD_GAIN
Definition reg.h:2548
#define AR5K_BEACON_5210
Definition reg.h:1235
#define AR5K_RF_BUFFER_CONTROL_5
Definition reg.h:2134
#define AR5K_RF_BUFFER_CONTROL_0
Definition reg.h:2121
#define AR5K_PHY_PDADC_TXPOWER(_n)
Definition reg.h:2573
#define AR5K_PHY_FRAME_CTL
Definition reg.h:2268
#define AR5K_PHY_TPC_RG1
Definition reg.h:2547
#define AR5K_RF_BUFFER
Definition reg.h:2120
#define AR5K_DIAG_SW_DIS_TX
Definition reg.h:1394
#define AR5K_PHY_TPC_RG1_PDGAIN_1
Definition reg.h:2550
#define AR5K_PHY_PAPD_PROBE_TX_NEXT
Definition reg.h:2241
#define AR5K_PHY_ACT_DISABLE
Definition reg.h:1929
#define AR5K_PHY_AGCCOARSE_HI
Definition reg.h:2017
#define AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE
Definition reg.h:2259
#define AR5K_PHY_TPC_RG5
Definition reg.h:2557
#define AR5K_PHY_PAPD_PROBE
Definition reg.h:2235
#define AR5K_PHY_NF_RVAL(_n)
Definition reg.h:2035
#define AR5K_PHY_TXPOWER_RATE2
Definition reg.h:2257
#define AR5K_PHY_CCKTXCTL_JAPAN
Definition reg.h:2507
#define AR5K_PHY_AGCCOARSE
Definition reg.h:2014
#define AR5K_PHY_SIG
Definition reg.h:2004
#define AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3
Definition reg.h:2564
#define AR5K_PHY_CCKTXCTL
Definition reg.h:2505
#define AR5K_PHY_NF_AVAL(_n)
Definition reg.h:2036
#define AR5K_DIAG_SW_5210
Definition reg.h:1385
#define AR5K_TPC_CTS
Definition reg.h:1557
#define AR5K_PHY_AGCCOARSE_LO
Definition reg.h:2015
#define AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1
Definition reg.h:2560
#define AR5K_PHY_ADCSAT
Definition reg.h:2046
#define AR5K_PHY(_n)
Definition reg.h:1856
#define AR5K_PHY_AGC_DISABLE
Definition reg.h:1902
#define AR5K_PHY_CCKTXCTL_WORLD
Definition reg.h:2506
#define AR5K_PHY_TXPOWER_RATE_MAX
Definition reg.h:2258
#define AR5K_TPC
Definition reg.h:1554
#define AR5K_PHY_IQRES_CAL_CORR
Definition reg.h:2402
#define AR5K_PHY_AGC
Definition reg.h:1900
#define AR5K_PHY_RFSTG_DISABLE
Definition reg.h:2145
#define AR5K_PHY_PAPD_PROBE_TXPOWER
Definition reg.h:2239
#define AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
Definition reg.h:2558
#define AR5K_PHY_ADCSAT_ICNT
Definition reg.h:2047
#define AR5K_PHY_SIG_FIRPWR
Definition reg.h:2007
#define AR5K_PHY_SHIFT_5GHZ
Definition reg.h:1879
#define AR5K_PHY_PAPD_PROBE_GAINF_S
Definition reg.h:2249
#define AR5K_PHY_IQRES_CAL_PWR_I
Definition reg.h:2400
#define AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4
Definition reg.h:2566
#define AR5K_PHY_PCDAC_TXPOWER(_n)
Definition reg.h:2482
#define AR5K_PHY_IQ_CORR_ENABLE
Definition reg.h:2189
#define AR5K_DEFAULT_ANTENNA
Definition reg.h:1471
#define AR5K_PHY_IQRES_CAL_PWR_Q
Definition reg.h:2401
#define AR5K_PHY_NF_ACTIVE
Definition reg.h:2034
#define AR5K_SREV_AR5413
Definition ath5k.h:301
#define CHANNEL_B
Definition ath5k.h:641
#define AR5K_TUNE_TPC_TXPOWER
Definition ath5k.h:195
#define AR5K_TUNE_NOISE_FLOOR
Definition ath5k.h:192
ath5k_rfgain
Definition ath5k.h:604
@ AR5K_RFGAIN_ACTIVE
Definition ath5k.h:606
@ AR5K_RFGAIN_INACTIVE
Definition ath5k.h:605
@ AR5K_RFGAIN_NEED_CHANGE
Definition ath5k.h:608
@ AR5K_RFGAIN_READ_REQUESTED
Definition ath5k.h:607
#define CHANNEL_TG
Definition ath5k.h:644
#define CHANNEL_XR
Definition ath5k.h:638
#define CHANNEL_CCK
Definition ath5k.h:632
#define CHANNEL_5GHZ
Definition ath5k.h:635
#define AR5K_MAX_RF_BANKS
Definition ath5k.h:952
#define CHANNEL_MODES
Definition ath5k.h:653
#define AR5K_REG_SM(_val, _flags)
Definition ath5k.h:86
#define AR5K_INI_RFGAIN_2GHZ
Definition ath5k.h:142
#define AR5K_TUNE_MAX_TXPOWER
Definition ath5k.h:193
#define CHANNEL_OFDM
Definition ath5k.h:633
#define AR5K_REG_ENABLE_BITS(ah, _reg, _flags)
Definition ath5k.h:106
#define CHANNEL_G
Definition ath5k.h:642
#define AR5K_SREV_PHY_5212A
Definition ath5k.h:329
#define AR5K_REG_MS(_val, _flags)
Definition ath5k.h:90
#define AR5K_SREV_AR2417
Definition ath5k.h:307
#define CHANNEL_T
Definition ath5k.h:643
#define AR5K_SREV_RAD_5112A
Definition ath5k.h:314
#define AR5K_TXPOWER_OFDM(_r, _v)
Definition ath5k.h:538
static u32 ath5k_hw_reg_read(struct ath5k_hw *ah, u16 reg)
Definition ath5k.h:1216
#define AR5K_SREV_AR5424
Definition ath5k.h:300
#define AR5K_REG_WRITE_BITS(ah, _reg, _flags, _val)
Definition ath5k.h:98
#define AR5K_TXPOWER_CCK(_r, _v)
Definition ath5k.h:543
@ AR5K_AR5210
Definition ath5k.h:256
#define AR5K_INI_RFGAIN_5GHZ
Definition ath5k.h:141
static u32 ath5k_hw_bitswap(u32 val, unsigned int bits)
Definition ath5k.h:1267
@ AR5K_RF2425
Definition ath5k.h:270
@ AR5K_RF5111
Definition ath5k.h:264
@ AR5K_RF5112
Definition ath5k.h:265
@ AR5K_RF5110
Definition ath5k.h:263
@ AR5K_RF2316
Definition ath5k.h:268
@ AR5K_RF5413
Definition ath5k.h:267
@ AR5K_RF2317
Definition ath5k.h:269
@ AR5K_RF2413
Definition ath5k.h:266
static void ath5k_hw_reg_write(struct ath5k_hw *ah, u32 val, u16 reg)
Definition ath5k.h:1224
#define CHANNEL_A
Definition ath5k.h:640
#define AR5K_REG_DISABLE_BITS(ah, _reg, _flags)
Definition ath5k.h:109
#define AR5K_TUNE_DEFAULT_TXPOWER
Definition ath5k.h:194
#define AR5K_REG_WAIT(_i)
Definition ath5k.h:135
#define CHANNEL_2GHZ
Definition ath5k.h:634
static void ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
Definition ath5k_phy.c:2006
static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Definition ath5k_phy.c:270
static void ath5k_create_power_curve(s16 pmin, s16 pmax, const s16 *pwr, const u8 *vpd, u8 num_points, u8 *vpd_table, u8 type)
Definition ath5k_phy.c:1529
int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
Definition ath5k_phy.c:453
void ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
Definition ath5k_phy.c:1417
static int ath5k_setup_channel_powertable(struct ath5k_hw *ah, struct net80211_channel *channel, u8 ee_mode, u8 type)
Definition ath5k_phy.c:2191
static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, u32 val, u8 reg_id, int set)
Definition ath5k_phy.c:52
static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition ath5k_phy.c:1178
int ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
Definition ath5k_phy.c:1128
static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
Definition ath5k_phy.c:195
static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition ath5k_phy.c:1278
static s16 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, s16 y_left, s16 y_right)
Definition ath5k_phy.c:1444
static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Definition ath5k_phy.c:321
static s16 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, const s16 *pwrL, const s16 *pwrR)
Definition ath5k_phy.c:1477
static void ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, struct net80211_channel *channel, struct ath5k_chan_pcal_info **pcinfo_l, struct ath5k_chan_pcal_info **pcinfo_r)
Definition ath5k_phy.c:1581
static void ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16 *table_min, s16 *table_max, u8 pdcurves)
Definition ath5k_phy.c:1882
static void ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16 *table_min, s16 *table_max)
Definition ath5k_phy.c:1836
static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Definition ath5k_phy.c:215
int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct net80211_channel *channel, unsigned int mode)
Definition ath5k_phy.c:515
static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition ath5k_phy.c:868
int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition ath5k_phy.c:1346
int ath5k_hw_phy_disable(struct ath5k_hw *ah)
Definition ath5k_phy.c:1359
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
Definition ath5k_phy.c:159
static void ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 pdcurves, u8 *pdg_to_idx)
Definition ath5k_phy.c:2126
int ath5k_hw_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition ath5k_phy.c:1049
static void ath5k_get_max_ctl_power(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition ath5k_phy.c:1749
static u32 ath5k_hw_rf5110_chan2athchan(struct net80211_channel *channel)
Definition ath5k_phy.c:849
int ath5k_hw_txpower(struct ath5k_hw *ah, struct net80211_channel *channel, u8 ee_mode, u8 txpower)
Definition ath5k_phy.c:2475
u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
Definition ath5k_phy.c:1373
static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, struct ath5k_athchan_2ghz *athchan)
Definition ath5k_phy.c:887
static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition ath5k_phy.c:1010
static void ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, struct ath5k_rate_pcal_info *rate_info, u8 ee_mode)
Definition ath5k_phy.c:2413
int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
Definition ath5k_phy.c:831
static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition ath5k_phy.c:916
static void ath5k_setup_pcdac_table(struct ath5k_hw *ah)
Definition ath5k_phy.c:1977
static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition ath5k_phy.c:962
int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
Definition ath5k_phy.c:2573
static void ath5k_get_rate_pcal_data(struct ath5k_hw *ah, struct net80211_channel *channel, struct ath5k_rate_pcal_info *rates)
Definition ath5k_phy.c:1661
enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
Definition ath5k_phy.c:390
unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
Definition ath5k_phy.c:1423
#define min(x, y)
Definition ath.h:36
#define max(x, y)
Definition ath.h:41
struct bofm_section_header done
Definition bofm_test.c:46
uint16_t offset
Offset to command line.
Definition bzimage.h:3
#define ARRAY_SIZE(x)
Definition efx_common.h:43
uint32_t type
Operating system type.
Definition ena.h:1
uint8_t data[48]
Additional event data.
Definition ena.h:11
uint8_t flags
Flags.
Definition ena.h:7
uint16_t mode
Acceleration mode.
Definition ena.h:15
#define DBG2(...)
Definition compiler.h:515
#define DBG(...)
Print a debugging message.
Definition compiler.h:498
uint16_t size
Buffer size.
Definition dwmac.h:3
#define FILE_LICENCE(_licence)
Declare a particular licence as applying to a file.
Definition compiler.h:896
#define EINVAL
Invalid argument.
Definition errno.h:429
#define ENOMEM
Not enough space.
Definition errno.h:535
#define EAGAIN
Resource temporarily unavailable.
Definition errno.h:319
#define FILE_SECBOOT(_status)
Declare a file's UEFI Secure Boot permission status.
Definition compiler.h:926
u8 rates[0]
Rates data, one rate per byte.
Definition ieee80211.h:2
#define u8
Definition igbvf_osdep.h:40
void __asmcall int val
Definition setjmp.h:12
int8_t s8
Definition stdint.h:19
int16_t s16
Definition stdint.h:21
int32_t s32
Definition stdint.h:23
void * memset(void *dest, int character, size_t len) __nonnull
unsigned long tmp
Definition linux_pci.h:65
void * malloc(size_t size)
Allocate memory.
Definition malloc.c:621
static unsigned int unsigned int reg
Definition myson.h:162
uint32_t channel
RNDIS channel.
Definition netvsc.h:3
struct option_descriptor set[0]
Definition nvo_cmd.c:112
static unsigned int unsigned int y
Definition pixbuf.h:63
static unsigned int x
Definition pixbuf.h:63
void step(void)
Single-step a single process.
Definition process.c:99
uint8_t ah
Definition registers.h:1
static const struct ath5k_rf_reg rf_regs_2316[]
Definition rfbuffer.h:732
static const struct ath5k_rf_reg rf_regs_5413[]
Definition rfbuffer.h:828
static const struct ath5k_ini_rfbuffer rfb_5112[]
Definition rfbuffer.h:338
static const struct ath5k_ini_rfbuffer rfb_5413[]
Definition rfbuffer.h:838
static const struct ath5k_rf_reg rf_regs_2425[]
Definition rfbuffer.h:939
@ AR5K_RF_RFGAIN_STEP
Definition rfbuffer.h:118
@ AR5K_RF_PWD_90
Definition rfbuffer.h:104
@ AR5K_RF_GAIN_I
Definition rfbuffer.h:115
@ AR5K_RF_MIXGAIN_OVR
Definition rfbuffer.h:123
@ AR5K_RF_RFGAIN_SEL
Definition rfbuffer.h:117
@ AR5K_RF_MIXVGA_OVR
Definition rfbuffer.h:122
@ AR5K_RF_XB5_LVL
Definition rfbuffer.h:101
@ AR5K_RF_DB_2GHZ
Definition rfbuffer.h:86
@ AR5K_RF_LOW_VC_CP
Definition rfbuffer.h:97
@ AR5K_RF_PWD_ICLOBUF_2G
Definition rfbuffer.h:102
@ AR5K_RF_PWD_130
Definition rfbuffer.h:105
@ AR5K_RF_OB_5GHZ
Definition rfbuffer.h:85
@ AR5K_RF_MIXGAIN_STEP
Definition rfbuffer.h:124
@ AR5K_RF_OB_2GHZ
Definition rfbuffer.h:84
@ AR5K_RF_PWD_167
Definition rfbuffer.h:112
@ AR5K_RF_PD_GAIN_LO
Definition rfbuffer.h:93
@ AR5K_RF_PD_GAIN_HI
Definition rfbuffer.h:94
@ AR5K_RF_PWD_XPD
Definition rfbuffer.h:90
@ AR5K_RF_HIGH_VC_CP
Definition rfbuffer.h:95
@ AR5K_RF_PWD_84
Definition rfbuffer.h:103
@ AR5K_RF_MID_VC_CP
Definition rfbuffer.h:96
@ AR5K_RF_XB2_LVL
Definition rfbuffer.h:100
@ AR5K_RF_PWD_131
Definition rfbuffer.h:106
@ AR5K_RF_PWD_138
Definition rfbuffer.h:110
@ AR5K_RF_PLO_SEL
Definition rfbuffer.h:116
@ AR5K_RF_XPD_GAIN
Definition rfbuffer.h:92
@ AR5K_RF_PUSH_UP
Definition rfbuffer.h:98
@ AR5K_RF_PAD2GND
Definition rfbuffer.h:99
@ AR5K_RF_PWD_136
Definition rfbuffer.h:108
@ AR5K_RF_XPD_SEL
Definition rfbuffer.h:91
@ AR5K_RF_PWD_132
Definition rfbuffer.h:107
@ AR5K_RF_PWD_166
Definition rfbuffer.h:111
@ AR5K_RF_PWD_137
Definition rfbuffer.h:109
@ AR5K_RF_DERBY_CHAN_SEL_MODE
Definition rfbuffer.h:113
@ AR5K_RF_DB_5GHZ
Definition rfbuffer.h:87
static const struct ath5k_ini_rfbuffer rfb_2417[]
Definition rfbuffer.h:1108
static const struct ath5k_rf_reg rf_regs_5111[]
Definition rfbuffer.h:161
static const struct ath5k_rf_reg rf_regs_5112a[]
Definition rfbuffer.h:480
static const struct ath5k_rf_reg rf_regs_5112[]
Definition rfbuffer.h:310
static const struct ath5k_ini_rfbuffer rfb_2317[]
Definition rfbuffer.h:1027
static const struct ath5k_ini_rfbuffer rfb_2316[]
Definition rfbuffer.h:738
static const struct ath5k_rf_reg rf_regs_2413[]
Definition rfbuffer.h:644
static const struct ath5k_ini_rfbuffer rfb_2425[]
Definition rfbuffer.h:947
static const struct ath5k_ini_rfbuffer rfb_5112a[]
Definition rfbuffer.h:518
static const struct ath5k_ini_rfbuffer rfb_2413[]
Definition rfbuffer.h:652
static const struct ath5k_ini_rfbuffer rfb_5111[]
Definition rfbuffer.h:180
static const struct ath5k_ini_rfgain rfgain_2413[]
Definition rfgain.h:172
static const struct ath5k_ini_rfgain rfgain_5413[]
Definition rfgain.h:309
static const struct ath5k_ini_rfgain rfgain_2425[]
Definition rfgain.h:379
#define AR5K_GAIN_CCK_PROBE_CORR
Definition rfgain.h:451
#define AR5K_GAIN_DYN_ADJUST_LO_MARGIN
Definition rfgain.h:450
static const struct ath5k_ini_rfgain rfgain_5112[]
Definition rfgain.h:103
static const struct ath5k_gain_opt rfgain_opt_5112
Definition rfgain.h:504
static const struct ath5k_ini_rfgain rfgain_2316[]
Definition rfgain.h:240
#define AR5K_GAIN_CHECK_ADJUST(_g)
Definition rfgain.h:457
static const struct ath5k_gain_opt rfgain_opt_5111
Definition rfgain.h:478
#define AR5K_GAIN_DYN_ADJUST_HI_MARGIN
Definition rfgain.h:449
static const struct ath5k_ini_rfgain rfgain_5111[]
Definition rfgain.h:34
char * strerror(int errno)
Retrieve string representation of error number.
Definition strerror.c:79
struct ath5k_pdgain_info * pd_curves
Definition eeprom.h:342
struct ath5k_rate_pcal_info ee_rate_tpwr_a[AR5K_EEPROM_N_5GHZ_CHAN]
Definition eeprom.h:434
u8 ee_n_piers[AR5K_EEPROM_N_MODES]
Definition eeprom.h:427
u16 ee_ob[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB]
Definition eeprom.h:404
u16 ee_cck_ofdm_gain_delta
Definition eeprom.h:391
u16 ee_i_gain[AR5K_EEPROM_N_MODES]
Definition eeprom.h:413
u8 ee_rate_target_pwr_num[AR5K_EEPROM_N_MODES]
Definition eeprom.h:433
struct ath5k_chan_pcal_info ee_pwr_cal_g[AR5K_EEPROM_N_2GHZ_CHAN_MAX]
Definition eeprom.h:430
struct ath5k_rate_pcal_info ee_rate_tpwr_g[AR5K_EEPROM_N_2GHZ_CHAN_MAX]
Definition eeprom.h:436
struct ath5k_rate_pcal_info ee_rate_tpwr_b[AR5K_EEPROM_N_2GHZ_CHAN_MAX]
Definition eeprom.h:435
u8 ee_ctl[AR5K_EEPROM_MAX_CTLS]
Definition eeprom.h:440
u8 ee_pd_gains[AR5K_EEPROM_N_MODES]
Definition eeprom.h:423
u16 ee_db[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB]
Definition eeprom.h:405
struct ath5k_chan_pcal_info ee_pwr_cal_a[AR5K_EEPROM_N_5GHZ_CHAN]
Definition eeprom.h:428
u8 ee_pdc_to_idx[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PD_GAINS]
Definition eeprom.h:425
u16 ee_x_gain[AR5K_EEPROM_N_MODES]
Definition eeprom.h:412
struct ath5k_edge_power ee_ctl_pwr[AR5K_EEPROM_N_EDGES *AR5K_EEPROM_MAX_CTLS]
Definition eeprom.h:441
u16 ee_xpd[AR5K_EEPROM_N_MODES]
Definition eeprom.h:411
struct ath5k_chan_pcal_info ee_pwr_cal_b[AR5K_EEPROM_N_2GHZ_CHAN_MAX]
Definition eeprom.h:429
s8 gos_param[AR5K_GAIN_CRN_MAX_FIX_BITS]
Definition rfgain.h:461
const struct ath5k_gain_opt_step go_step[AR5K_GAIN_STEP_COUNT]
Definition rfgain.h:468
u8 go_steps_count
Definition rfgain.h:467
ath5k_hw_get_isr - Get interrupt status
Definition ath5k.h:955
u32 rfb_mode_data[5]
Definition rfbuffer.h:55
u32 rfg_value[2]
Definition rfgain.h:30
struct ath5k_rfb_field field
Definition rfbuffer.h:75
An 802.11 RF channel.
Definition net80211.h:386
void mdelay(unsigned long msecs)
Delay for a fixed number of milliseconds.
Definition timer.c:79
void udelay(unsigned long usecs)
Delay for a fixed number of microseconds.
Definition timer.c:61
#define u16
Definition vga.h:20
#define u32
Definition vga.h:21