iPXE
ath5k_phy.c
Go to the documentation of this file.
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Lightly modified for iPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
10  *
11  * Permission to use, copy, modify, and distribute this software for any
12  * purpose with or without fee is hereby granted, provided that the above
13  * copyright notice and this permission notice appear in all copies.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
16  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
17  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
18  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
19  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
20  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
21  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22  *
23  */
24 
25 FILE_LICENCE ( MIT );
26 
27 #define _ATH5K_PHY
28 
29 #include <unistd.h>
30 #include <stdlib.h>
31 
32 #include "ath5k.h"
33 #include "reg.h"
34 #include "base.h"
35 #include "rfbuffer.h"
36 #include "rfgain.h"
37 
38 static inline int min(int x, int y)
39 {
40  return (x < y) ? x : y;
41 }
42 
43 static inline int max(int x, int y)
44 {
45  return (x > y) ? x : y;
46 }
47 
48 /*
49  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
50  */
51 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
52  const struct ath5k_rf_reg *rf_regs,
53  u32 val, u8 reg_id, int set)
54 {
55  const struct ath5k_rf_reg *rfreg = NULL;
56  u8 offset, bank, num_bits, col, position;
57  u16 entry;
58  u32 mask, data, last_bit, bits_shifted, first_bit;
59  u32 *rfb;
60  s32 bits_left;
61  unsigned i;
62 
63  data = 0;
64  rfb = ah->ah_rf_banks;
65 
66  for (i = 0; i < ah->ah_rf_regs_count; i++) {
67  if (rf_regs[i].index == reg_id) {
68  rfreg = &rf_regs[i];
69  break;
70  }
71  }
72 
73  if (rfb == NULL || rfreg == NULL) {
74  DBG("ath5k: RF register not found!\n");
75  /* should not happen */
76  return 0;
77  }
78 
79  bank = rfreg->bank;
80  num_bits = rfreg->field.len;
81  first_bit = rfreg->field.pos;
82  col = rfreg->field.col;
83 
84  /* first_bit is an offset from bank's
85  * start. Since we have all banks on
86  * the same array, we use this offset
87  * to mark each bank's start */
88  offset = ah->ah_offset[bank];
89 
90  /* Boundary check */
91  if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
92  DBG("ath5k: RF invalid values at offset %d\n", offset);
93  return 0;
94  }
95 
96  entry = ((first_bit - 1) / 8) + offset;
97  position = (first_bit - 1) % 8;
98 
99  if (set)
100  data = ath5k_hw_bitswap(val, num_bits);
101 
102  for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
103  position = 0, entry++) {
104 
105  last_bit = (position + bits_left > 8) ? 8 :
106  position + bits_left;
107 
108  mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
109  (col * 8);
110 
111  if (set) {
112  rfb[entry] &= ~mask;
113  rfb[entry] |= ((data << position) << (col * 8)) & mask;
114  data >>= (8 - position);
115  } else {
116  data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
117  << bits_shifted;
118  bits_shifted += last_bit - position;
119  }
120 
121  bits_left -= 8 - position;
122  }
123 
124  data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
125 
126  return data;
127 }
128 
129 /**********************\
130 * RF Gain optimization *
131 \**********************/
132 
133 /*
134  * This code is used to optimize rf gain on different environments
135  * (temprature mostly) based on feedback from a power detector.
136  *
137  * It's only used on RF5111 and RF5112, later RF chips seem to have
138  * auto adjustment on hw -notice they have a much smaller BANK 7 and
139  * no gain optimization ladder-.
140  *
141  * For more infos check out this patent doc
142  * http://www.freepatentsonline.com/7400691.html
143  *
144  * This paper describes power drops as seen on the receiver due to
145  * probe packets
146  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
147  * %20of%20Power%20Control.pdf
148  *
149  * And this is the MadWiFi bug entry related to the above
150  * http://madwifi-project.org/ticket/1659
151  * with various measurements and diagrams
152  *
153  * TODO: Deal with power drops due to probes by setting an apropriate
154  * tx power on the probe packets ! Make this part of the calibration process.
155  */
156 
157 /* Initialize ah_gain durring attach */
159 {
160  /* Initialize the gain optimization values */
161  switch (ah->ah_radio) {
162  case AR5K_RF5111:
163  ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
164  ah->ah_gain.g_low = 20;
165  ah->ah_gain.g_high = 35;
166  ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
167  break;
168  case AR5K_RF5112:
169  ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
170  ah->ah_gain.g_low = 20;
171  ah->ah_gain.g_high = 85;
172  ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
173  break;
174  default:
175  return -EINVAL;
176  }
177 
178  return 0;
179 }
180 
181 /* Schedule a gain probe check on the next transmited packet.
182  * That means our next packet is going to be sent with lower
183  * tx power and a Peak to Average Power Detector (PAPD) will try
184  * to measure the gain.
185  *
186  * TODO: Use propper tx power setting for the probe packet so
187  * that we don't observe a serious power drop on the receiver
188  *
189  * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
190  * just after we enable the probe so that we don't mess with
191  * standard traffic ? Maybe it's time to use sw interrupts and
192  * a probe tasklet !!!
193  */
195 {
196 
197  /* Skip if gain calibration is inactive or
198  * we already handle a probe request */
199  if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
200  return;
201 
202  /* Send the packet with 2dB below max power as
203  * patent doc suggest */
204  ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
207 
208  ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
209 
210 }
211 
212 /* Calculate gain_F measurement correction
213  * based on the current step for RF5112 rev. 2 */
215 {
216  u32 mix, step;
217  const struct ath5k_gain_opt *go;
218  const struct ath5k_gain_opt_step *g_step;
219  const struct ath5k_rf_reg *rf_regs;
220 
221  /* Only RF5112 Rev. 2 supports it */
222  if ((ah->ah_radio != AR5K_RF5112) ||
223  (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
224  return 0;
225 
226  go = &rfgain_opt_5112;
227  rf_regs = rf_regs_5112a;
228  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
229 
230  g_step = &go->go_step[ah->ah_gain.g_step_idx];
231 
232  if (ah->ah_rf_banks == NULL)
233  return 0;
234 
235  ah->ah_gain.g_f_corr = 0;
236 
237  /* No VGA (Variable Gain Amplifier) override, skip */
238  if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0) != 1)
239  return 0;
240 
241  /* Mix gain stepping */
242  step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, 0);
243 
244  /* Mix gain override */
245  mix = g_step->gos_param[0];
246 
247  switch (mix) {
248  case 3:
249  ah->ah_gain.g_f_corr = step * 2;
250  break;
251  case 2:
252  ah->ah_gain.g_f_corr = (step - 5) * 2;
253  break;
254  case 1:
255  ah->ah_gain.g_f_corr = step;
256  break;
257  default:
258  ah->ah_gain.g_f_corr = 0;
259  break;
260  }
261 
262  return ah->ah_gain.g_f_corr;
263 }
264 
265 /* Check if current gain_F measurement is in the range of our
266  * power detector windows. If we get a measurement outside range
267  * we know it's not accurate (detectors can't measure anything outside
268  * their detection window) so we must ignore it */
270 {
271  const struct ath5k_rf_reg *rf_regs;
272  u32 step, mix_ovr, level[4];
273 
274  if (ah->ah_rf_banks == NULL)
275  return 0;
276 
277  if (ah->ah_radio == AR5K_RF5111) {
278 
279  rf_regs = rf_regs_5111;
280  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
281 
283  0);
284 
285  level[0] = 0;
286  level[1] = (step == 63) ? 50 : step + 4;
287  level[2] = (step != 63) ? 64 : level[0];
288  level[3] = level[2] + 50 ;
289 
290  ah->ah_gain.g_high = level[3] -
291  (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
292  ah->ah_gain.g_low = level[0] +
293  (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
294  } else {
295 
296  rf_regs = rf_regs_5112;
297  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
298 
299  mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
300  0);
301 
302  level[0] = level[2] = 0;
303 
304  if (mix_ovr == 1) {
305  level[1] = level[3] = 83;
306  } else {
307  level[1] = level[3] = 107;
308  ah->ah_gain.g_high = 55;
309  }
310  }
311 
312  return (ah->ah_gain.g_current >= level[0] &&
313  ah->ah_gain.g_current <= level[1]) ||
314  (ah->ah_gain.g_current >= level[2] &&
315  ah->ah_gain.g_current <= level[3]);
316 }
317 
318 /* Perform gain_F adjustment by choosing the right set
319  * of parameters from rf gain optimization ladder */
321 {
322  const struct ath5k_gain_opt *go;
323  const struct ath5k_gain_opt_step *g_step;
324  int ret = 0;
325 
326  switch (ah->ah_radio) {
327  case AR5K_RF5111:
328  go = &rfgain_opt_5111;
329  break;
330  case AR5K_RF5112:
331  go = &rfgain_opt_5112;
332  break;
333  default:
334  return 0;
335  }
336 
337  g_step = &go->go_step[ah->ah_gain.g_step_idx];
338 
339  if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
340 
341  /* Reached maximum */
342  if (ah->ah_gain.g_step_idx == 0)
343  return -1;
344 
345  for (ah->ah_gain.g_target = ah->ah_gain.g_current;
346  ah->ah_gain.g_target >= ah->ah_gain.g_high &&
347  ah->ah_gain.g_step_idx > 0;
348  g_step = &go->go_step[ah->ah_gain.g_step_idx])
349  ah->ah_gain.g_target -= 2 *
350  (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
351  g_step->gos_gain);
352 
353  ret = 1;
354  goto done;
355  }
356 
357  if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
358 
359  /* Reached minimum */
360  if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
361  return -2;
362 
363  for (ah->ah_gain.g_target = ah->ah_gain.g_current;
364  ah->ah_gain.g_target <= ah->ah_gain.g_low &&
365  ah->ah_gain.g_step_idx < go->go_steps_count-1;
366  g_step = &go->go_step[ah->ah_gain.g_step_idx])
367  ah->ah_gain.g_target -= 2 *
368  (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
369  g_step->gos_gain);
370 
371  ret = 2;
372  goto done;
373  }
374 
375 done:
376  DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, "
377  "target gain %d\n", ret, ah->ah_gain.g_step_idx,
378  ah->ah_gain.g_current, ah->ah_gain.g_target);
379 
380  return ret;
381 }
382 
383 /* Main callback for thermal rf gain calibration engine
384  * Check for a new gain reading and schedule an adjustment
385  * if needed.
386  *
387  * TODO: Use sw interrupt to schedule reset if gain_F needs
388  * adjustment */
390 {
391  u32 data, type;
392  struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
393 
394  if (ah->ah_rf_banks == NULL ||
395  ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
396  return AR5K_RFGAIN_INACTIVE;
397 
398  /* No check requested, either engine is inactive
399  * or an adjustment is already requested */
400  if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
401  goto done;
402 
403  /* Read the PAPD (Peak to Average Power Detector)
404  * register */
406 
407  /* No probe is scheduled, read gain_F measurement */
409  ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
411 
412  /* If tx packet is CCK correct the gain_F measurement
413  * by cck ofdm gain delta */
415  if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
416  ah->ah_gain.g_current +=
418  else
419  ah->ah_gain.g_current +=
421  }
422 
423  /* Further correct gain_F measurement for
424  * RF5112A radios */
425  if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
427  ah->ah_gain.g_current =
428  ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
429  (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
430  0;
431  }
432 
433  /* Check if measurement is ok and if we need
434  * to adjust gain, schedule a gain adjustment,
435  * else switch back to the acive state */
437  AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
439  ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
440  } else {
441  ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
442  }
443  }
444 
445 done:
446  return ah->ah_gain.g_state;
447 }
448 
449 /* Write initial rf gain table to set the RF sensitivity
450  * this one works on all RF chips and has nothing to do
451  * with gain_F calibration */
452 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
453 {
454  const struct ath5k_ini_rfgain *ath5k_rfg;
455  unsigned int i, size;
456 
457  switch (ah->ah_radio) {
458  case AR5K_RF5111:
459  ath5k_rfg = rfgain_5111;
461  break;
462  case AR5K_RF5112:
463  ath5k_rfg = rfgain_5112;
465  break;
466  case AR5K_RF2413:
467  ath5k_rfg = rfgain_2413;
469  break;
470  case AR5K_RF2316:
471  ath5k_rfg = rfgain_2316;
473  break;
474  case AR5K_RF5413:
475  ath5k_rfg = rfgain_5413;
477  break;
478  case AR5K_RF2317:
479  case AR5K_RF2425:
480  ath5k_rfg = rfgain_2425;
482  break;
483  default:
484  return -EINVAL;
485  }
486 
487  switch (freq) {
490  break;
491  default:
492  return -EINVAL;
493  }
494 
495  for (i = 0; i < size; i++) {
496  AR5K_REG_WAIT(i);
497  ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
498  (u32)ath5k_rfg[i].rfg_register);
499  }
500 
501  return 0;
502 }
503 
504 
505 
506 /********************\
507 * RF Registers setup *
508 \********************/
509 
510 
511 /*
512  * Setup RF registers by writing rf buffer on hw
513  */
515  unsigned int mode)
516 {
517  const struct ath5k_rf_reg *rf_regs;
518  const struct ath5k_ini_rfbuffer *ini_rfb;
519  const struct ath5k_gain_opt *go = NULL;
520  const struct ath5k_gain_opt_step *g_step;
521  struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
522  u8 ee_mode = 0;
523  u32 *rfb;
524  int obdb = -1, bank = -1;
525  unsigned i;
526 
527  switch (ah->ah_radio) {
528  case AR5K_RF5111:
529  rf_regs = rf_regs_5111;
530  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
531  ini_rfb = rfb_5111;
532  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
533  go = &rfgain_opt_5111;
534  break;
535  case AR5K_RF5112:
536  if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
537  rf_regs = rf_regs_5112a;
538  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
539  ini_rfb = rfb_5112a;
540  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
541  } else {
542  rf_regs = rf_regs_5112;
543  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
544  ini_rfb = rfb_5112;
545  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
546  }
547  go = &rfgain_opt_5112;
548  break;
549  case AR5K_RF2413:
550  rf_regs = rf_regs_2413;
551  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
552  ini_rfb = rfb_2413;
553  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
554  break;
555  case AR5K_RF2316:
556  rf_regs = rf_regs_2316;
557  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
558  ini_rfb = rfb_2316;
559  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
560  break;
561  case AR5K_RF5413:
562  rf_regs = rf_regs_5413;
563  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
564  ini_rfb = rfb_5413;
565  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
566  break;
567  case AR5K_RF2317:
568  rf_regs = rf_regs_2425;
569  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
570  ini_rfb = rfb_2317;
571  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
572  break;
573  case AR5K_RF2425:
574  rf_regs = rf_regs_2425;
575  ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
576  if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
577  ini_rfb = rfb_2425;
578  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
579  } else {
580  ini_rfb = rfb_2417;
581  ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
582  }
583  break;
584  default:
585  return -EINVAL;
586  }
587 
588  /* If it's the first time we set rf buffer, allocate
589  * ah->ah_rf_banks based on ah->ah_rf_banks_size
590  * we set above */
591  if (ah->ah_rf_banks == NULL) {
592  ah->ah_rf_banks = malloc(sizeof(u32) * ah->ah_rf_banks_size);
593  if (ah->ah_rf_banks == NULL) {
594  return -ENOMEM;
595  }
596  }
597 
598  /* Copy values to modify them */
599  rfb = ah->ah_rf_banks;
600 
601  for (i = 0; i < ah->ah_rf_banks_size; i++) {
602  if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
603  DBG("ath5k: invalid RF register bank\n");
604  return -EINVAL;
605  }
606 
607  /* Bank changed, write down the offset */
608  if (bank != ini_rfb[i].rfb_bank) {
609  bank = ini_rfb[i].rfb_bank;
610  ah->ah_offset[bank] = i;
611  }
612 
613  rfb[i] = ini_rfb[i].rfb_mode_data[mode];
614  }
615 
616  /* Set Output and Driver bias current (OB/DB) */
617  if (channel->hw_value & CHANNEL_2GHZ) {
618 
619  if (channel->hw_value & CHANNEL_CCK)
620  ee_mode = AR5K_EEPROM_MODE_11B;
621  else
622  ee_mode = AR5K_EEPROM_MODE_11G;
623 
624  /* For RF511X/RF211X combination we
625  * use b_OB and b_DB parameters stored
626  * in eeprom on ee->ee_ob[ee_mode][0]
627  *
628  * For all other chips we use OB/DB for 2Ghz
629  * stored in the b/g modal section just like
630  * 802.11a on ee->ee_ob[ee_mode][1] */
631  if ((ah->ah_radio == AR5K_RF5111) ||
632  (ah->ah_radio == AR5K_RF5112))
633  obdb = 0;
634  else
635  obdb = 1;
636 
637  ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
638  AR5K_RF_OB_2GHZ, 1);
639 
640  ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
641  AR5K_RF_DB_2GHZ, 1);
642 
643  /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
644  } else if ((channel->hw_value & CHANNEL_5GHZ) ||
645  (ah->ah_radio == AR5K_RF5111)) {
646 
647  /* For 11a, Turbo and XR we need to choose
648  * OB/DB based on frequency range */
649  ee_mode = AR5K_EEPROM_MODE_11A;
650  obdb = channel->center_freq >= 5725 ? 3 :
651  (channel->center_freq >= 5500 ? 2 :
652  (channel->center_freq >= 5260 ? 1 :
653  (channel->center_freq > 4000 ? 0 : -1)));
654 
655  if (obdb < 0)
656  return -EINVAL;
657 
658  ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
659  AR5K_RF_OB_5GHZ, 1);
660 
661  ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
662  AR5K_RF_DB_5GHZ, 1);
663  }
664 
665  g_step = &go->go_step[ah->ah_gain.g_step_idx];
666 
667  /* Bank Modifications (chip-specific) */
668  if (ah->ah_radio == AR5K_RF5111) {
669 
670  /* Set gain_F settings according to current step */
671  if (channel->hw_value & CHANNEL_OFDM) {
672 
675  g_step->gos_param[0]);
676 
677  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
678  AR5K_RF_PWD_90, 1);
679 
680  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
681  AR5K_RF_PWD_84, 1);
682 
683  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
684  AR5K_RF_RFGAIN_SEL, 1);
685 
686  /* We programmed gain_F parameters, switch back
687  * to active state */
688  ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
689 
690  }
691 
692  /* Bank 6/7 setup */
693 
694  ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
695  AR5K_RF_PWD_XPD, 1);
696 
697  ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
698  AR5K_RF_XPD_GAIN, 1);
699 
700  ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
701  AR5K_RF_GAIN_I, 1);
702 
703  ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
704  AR5K_RF_PLO_SEL, 1);
705 
706  /* TODO: Half/quarter channel support */
707  }
708 
709  if (ah->ah_radio == AR5K_RF5112) {
710 
711  /* Set gain_F settings according to current step */
712  if (channel->hw_value & CHANNEL_OFDM) {
713 
714  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
716 
717  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
718  AR5K_RF_PWD_138, 1);
719 
720  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
721  AR5K_RF_PWD_137, 1);
722 
723  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
724  AR5K_RF_PWD_136, 1);
725 
726  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
727  AR5K_RF_PWD_132, 1);
728 
729  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
730  AR5K_RF_PWD_131, 1);
731 
732  ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
733  AR5K_RF_PWD_130, 1);
734 
735  /* We programmed gain_F parameters, switch back
736  * to active state */
737  ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
738  }
739 
740  /* Bank 6/7 setup */
741 
742  ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
743  AR5K_RF_XPD_SEL, 1);
744 
745  if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
746  /* Rev. 1 supports only one xpd */
747  ath5k_hw_rfb_op(ah, rf_regs,
748  ee->ee_x_gain[ee_mode],
749  AR5K_RF_XPD_GAIN, 1);
750 
751  } else {
752  /* TODO: Set high and low gain bits */
753  ath5k_hw_rfb_op(ah, rf_regs,
754  ee->ee_x_gain[ee_mode],
755  AR5K_RF_PD_GAIN_LO, 1);
756  ath5k_hw_rfb_op(ah, rf_regs,
757  ee->ee_x_gain[ee_mode],
758  AR5K_RF_PD_GAIN_HI, 1);
759 
760  /* Lower synth voltage on Rev 2 */
761  ath5k_hw_rfb_op(ah, rf_regs, 2,
762  AR5K_RF_HIGH_VC_CP, 1);
763 
764  ath5k_hw_rfb_op(ah, rf_regs, 2,
765  AR5K_RF_MID_VC_CP, 1);
766 
767  ath5k_hw_rfb_op(ah, rf_regs, 2,
768  AR5K_RF_LOW_VC_CP, 1);
769 
770  ath5k_hw_rfb_op(ah, rf_regs, 2,
771  AR5K_RF_PUSH_UP, 1);
772 
773  /* Decrease power consumption on 5213+ BaseBand */
774  if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
775  ath5k_hw_rfb_op(ah, rf_regs, 1,
776  AR5K_RF_PAD2GND, 1);
777 
778  ath5k_hw_rfb_op(ah, rf_regs, 1,
779  AR5K_RF_XB2_LVL, 1);
780 
781  ath5k_hw_rfb_op(ah, rf_regs, 1,
782  AR5K_RF_XB5_LVL, 1);
783 
784  ath5k_hw_rfb_op(ah, rf_regs, 1,
785  AR5K_RF_PWD_167, 1);
786 
787  ath5k_hw_rfb_op(ah, rf_regs, 1,
788  AR5K_RF_PWD_166, 1);
789  }
790  }
791 
792  ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
793  AR5K_RF_GAIN_I, 1);
794 
795  /* TODO: Half/quarter channel support */
796 
797  }
798 
799  if (ah->ah_radio == AR5K_RF5413 &&
800  channel->hw_value & CHANNEL_2GHZ) {
801 
803  1);
804 
805  /* Set optimum value for early revisions (on pci-e chips) */
806  if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
807  ah->ah_mac_srev < AR5K_SREV_AR5413)
808  ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
810 
811  }
812 
813  /* Write RF banks on hw */
814  for (i = 0; i < ah->ah_rf_banks_size; i++) {
815  AR5K_REG_WAIT(i);
816  ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
817  }
818 
819  return 0;
820 }
821 
822 
823 /**************************\
824  PHY/RF channel functions
825 \**************************/
826 
827 /*
828  * Check if a channel is supported
829  */
830 int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
831 {
832  /* Check if the channel is in our supported range */
833  if (flags & CHANNEL_2GHZ) {
834  if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
835  (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
836  return 1;
837  } else if (flags & CHANNEL_5GHZ)
838  if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
839  (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
840  return 1;
841 
842  return 0;
843 }
844 
845 /*
846  * Convertion needed for RF5110
847  */
849 {
850  u32 athchan;
851 
852  /*
853  * Convert IEEE channel/MHz to an internal channel value used
854  * by the AR5210 chipset. This has not been verified with
855  * newer chipsets like the AR5212A who have a completely
856  * different RF/PHY part.
857  */
858  athchan = (ath5k_hw_bitswap((ath5k_freq_to_channel(channel->center_freq)
859  - 24) / 2, 5) << 1)
860  | (1 << 6) | 0x1;
861  return athchan;
862 }
863 
864 /*
865  * Set channel on RF5110
866  */
868  struct net80211_channel *channel)
869 {
870  u32 data;
871 
872  /*
873  * Set the channel and wait
874  */
878  mdelay(1);
879 
880  return 0;
881 }
882 
883 /*
884  * Convertion needed for 5111
885  */
886 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
887  struct ath5k_athchan_2ghz *athchan)
888 {
889  int channel;
890 
891  /* Cast this value to catch negative channel numbers (>= -19) */
892  channel = (int)ieee;
893 
894  /*
895  * Map 2GHz IEEE channel to 5GHz Atheros channel
896  */
897  if (channel <= 13) {
898  athchan->a2_athchan = 115 + channel;
899  athchan->a2_flags = 0x46;
900  } else if (channel == 14) {
901  athchan->a2_athchan = 124;
902  athchan->a2_flags = 0x44;
903  } else if (channel >= 15 && channel <= 26) {
904  athchan->a2_athchan = ((channel - 14) * 4) + 132;
905  athchan->a2_flags = 0x46;
906  } else
907  return -EINVAL;
908 
909  return 0;
910 }
911 
912 /*
913  * Set channel on 5111
914  */
916  struct net80211_channel *channel)
917 {
918  struct ath5k_athchan_2ghz ath5k_channel_2ghz;
919  unsigned int ath5k_channel = ath5k_freq_to_channel(channel->center_freq);
920  u32 data0, data1, clock;
921  int ret;
922 
923  /*
924  * Set the channel on the RF5111 radio
925  */
926  data0 = data1 = 0;
927 
928  if (channel->hw_value & CHANNEL_2GHZ) {
929  /* Map 2GHz channel to 5GHz Atheros channel ID */
930  ret = ath5k_hw_rf5111_chan2athchan(ath5k_channel,
931  &ath5k_channel_2ghz);
932  if (ret)
933  return ret;
934 
935  ath5k_channel = ath5k_channel_2ghz.a2_athchan;
936  data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
937  << 5) | (1 << 4);
938  }
939 
940  if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
941  clock = 1;
942  data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
943  (clock << 1) | (1 << 10) | 1;
944  } else {
945  clock = 0;
946  data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
947  << 2) | (clock << 1) | (1 << 10) | 1;
948  }
949 
950  ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
952  ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
954 
955  return 0;
956 }
957 
958 /*
959  * Set channel on 5112 and newer
960  */
962  struct net80211_channel *channel)
963 {
964  u32 data, data0, data1, data2;
965  u16 c;
966 
967  data = data0 = data1 = data2 = 0;
968  c = channel->center_freq;
969 
970  if (c < 4800) {
971  if (!((c - 2224) % 5)) {
972  data0 = ((2 * (c - 704)) - 3040) / 10;
973  data1 = 1;
974  } else if (!((c - 2192) % 5)) {
975  data0 = ((2 * (c - 672)) - 3040) / 10;
976  data1 = 0;
977  } else
978  return -EINVAL;
979 
980  data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
981  } else if ((c - (c % 5)) != 2 || c > 5435) {
982  if (!(c % 20) && c >= 5120) {
983  data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
984  data2 = ath5k_hw_bitswap(3, 2);
985  } else if (!(c % 10)) {
986  data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
987  data2 = ath5k_hw_bitswap(2, 2);
988  } else if (!(c % 5)) {
989  data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
990  data2 = ath5k_hw_bitswap(1, 2);
991  } else
992  return -EINVAL;
993  } else {
994  data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
995  data2 = ath5k_hw_bitswap(0, 2);
996  }
997 
998  data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
999 
1002 
1003  return 0;
1004 }
1005 
1006 /*
1007  * Set the channel on the RF2425
1008  */
1010  struct net80211_channel *channel)
1011 {
1012  u32 data, data0, data2;
1013  u16 c;
1014 
1015  data = data0 = data2 = 0;
1016  c = channel->center_freq;
1017 
1018  if (c < 4800) {
1019  data0 = ath5k_hw_bitswap((c - 2272), 8);
1020  data2 = 0;
1021  /* ? 5GHz ? */
1022  } else if ((c - (c % 5)) != 2 || c > 5435) {
1023  if (!(c % 20) && c < 5120)
1024  data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1025  else if (!(c % 10))
1026  data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1027  else if (!(c % 5))
1028  data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1029  else
1030  return -EINVAL;
1031  data2 = ath5k_hw_bitswap(1, 2);
1032  } else {
1033  data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1034  data2 = ath5k_hw_bitswap(0, 2);
1035  }
1036 
1037  data = (data0 << 4) | data2 << 2 | 0x1001;
1038 
1041 
1042  return 0;
1043 }
1044 
1045 /*
1046  * Set a channel on the radio chip
1047  */
1049 {
1050  int ret;
1051  /*
1052  * Check bounds supported by the PHY (we don't care about regultory
1053  * restrictions at this point). Note: hw_value already has the band
1054  * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1055  * of the band by that */
1056  if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1057  DBG("ath5k: channel frequency (%d MHz) out of supported "
1058  "range\n", channel->center_freq);
1059  return -EINVAL;
1060  }
1061 
1062  /*
1063  * Set the channel and wait
1064  */
1065  switch (ah->ah_radio) {
1066  case AR5K_RF5110:
1068  break;
1069  case AR5K_RF5111:
1071  break;
1072  case AR5K_RF2425:
1074  break;
1075  default:
1077  break;
1078  }
1079 
1080  if (ret) {
1081  DBG("ath5k: setting channel failed: %s\n", strerror(ret));
1082  return ret;
1083  }
1084 
1085  /* Set JAPAN setting for channel 14 */
1086  if (channel->center_freq == 2484) {
1089  } else {
1092  }
1093 
1094  ah->ah_current_channel = channel;
1095  ah->ah_turbo = (channel->hw_value == CHANNEL_T ? 1 : 0);
1096 
1097  return 0;
1098 }
1099 
1100 /*****************\
1101  PHY calibration
1102 \*****************/
1103 
1104 /**
1105  * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1106  *
1107  * @ah: struct ath5k_hw pointer we are operating on
1108  * @freq: the channel frequency, just used for error logging
1109  *
1110  * This function performs a noise floor calibration of the PHY and waits for
1111  * it to complete. Then the noise floor value is compared to some maximum
1112  * noise floor we consider valid.
1113  *
1114  * Note that this is different from what the madwifi HAL does: it reads the
1115  * noise floor and afterwards initiates the calibration. Since the noise floor
1116  * calibration can take some time to finish, depending on the current channel
1117  * use, that avoids the occasional timeout warnings we are seeing now.
1118  *
1119  * See the following link for an Atheros patent on noise floor calibration:
1120  * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1121  * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1122  *
1123  * XXX: Since during noise floor calibration antennas are detached according to
1124  * the patent, we should stop tx queues here.
1125  */
1126 int
1128 {
1129  int ret;
1130  unsigned int i;
1131  s32 noise_floor;
1132 
1133  /*
1134  * Enable noise floor calibration
1135  */
1138 
1139  ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1140  AR5K_PHY_AGCCTL_NF, 0, 0);
1141 
1142  if (ret) {
1143  DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq);
1144  return -EAGAIN;
1145  }
1146 
1147  /* Wait until the noise floor is calibrated and read the value */
1148  for (i = 20; i > 0; i--) {
1149  mdelay(1);
1150  noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1151  noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1152  if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1153  noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1154 
1155  if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1156  break;
1157  }
1158  }
1159 
1160  DBG2("ath5k: noise floor %d\n", noise_floor);
1161 
1162  if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1163  DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq);
1164  return -EAGAIN;
1165  }
1166 
1167  ah->ah_noise_floor = noise_floor;
1168 
1169  return 0;
1170 }
1171 
1172 /*
1173  * Perform a PHY calibration on RF5110
1174  * -Fix BPSK/QAM Constellation (I/Q correction)
1175  * -Calculate Noise Floor
1176  */
1178  struct net80211_channel *channel)
1179 {
1180  u32 phy_sig, phy_agc, phy_sat, beacon;
1181  int ret;
1182 
1183  /*
1184  * Disable beacons and RX/TX queues, wait
1185  */
1190 
1191  mdelay(2);
1192 
1193  /*
1194  * Set the channel (with AGC turned off)
1195  */
1197  udelay(10);
1198  ret = ath5k_hw_channel(ah, channel);
1199 
1200  /*
1201  * Activate PHY and wait
1202  */
1204  mdelay(1);
1205 
1207 
1208  if (ret)
1209  return ret;
1210 
1211  /*
1212  * Calibrate the radio chip
1213  */
1214 
1215  /* Remember normal state */
1216  phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1218  phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1219 
1220  /* Update radio registers */
1221  ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1223 
1228 
1233 
1234  udelay(20);
1235 
1237  udelay(10);
1240 
1241  mdelay(1);
1242 
1243  /*
1244  * Enable calibration and wait until completion
1245  */
1247 
1248  ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1249  AR5K_PHY_AGCCTL_CAL, 0, 0);
1250 
1251  /* Reset to normal state */
1252  ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1255 
1256  if (ret) {
1257  DBG("ath5k: calibration timeout (%d MHz)\n",
1258  channel->center_freq);
1259  return ret;
1260  }
1261 
1263 
1264  /*
1265  * Re-enable RX/TX and beacons
1266  */
1270 
1271  return 0;
1272 }
1273 
1274 /*
1275  * Perform a PHY calibration on RF5111/5112 and newer chips
1276  */
1278  struct net80211_channel *channel)
1279 {
1280  u32 i_pwr, q_pwr;
1281  s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1282  int i;
1283 
1284  if (!ah->ah_calibration ||
1286  goto done;
1287 
1288  /* Calibration has finished, get the results and re-run */
1289  for (i = 0; i <= 10; i++) {
1293  }
1294 
1295  i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1296  q_coffd = q_pwr >> 7;
1297 
1298  /* No correction */
1299  if (i_coffd == 0 || q_coffd == 0)
1300  goto done;
1301 
1302  i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1303 
1304  /* Boundary check */
1305  if (i_coff > 31)
1306  i_coff = 31;
1307  if (i_coff < -32)
1308  i_coff = -32;
1309 
1310  q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1311 
1312  /* Boundary check */
1313  if (q_coff > 15)
1314  q_coff = 15;
1315  if (q_coff < -16)
1316  q_coff = -16;
1317 
1318  /* Commit new I/Q value */
1320  ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1321 
1322  /* Re-enable calibration -if we don't we'll commit
1323  * the same values again and again */
1327 
1328 done:
1329 
1330  /* TODO: Separate noise floor calibration from I/Q calibration
1331  * since noise floor calibration interrupts rx path while I/Q
1332  * calibration doesn't. We don't need to run noise floor calibration
1333  * as often as I/Q calibration.*/
1335 
1336  /* Initiate a gain_F calibration */
1338 
1339  return 0;
1340 }
1341 
1342 /*
1343  * Perform a PHY calibration
1344  */
1346  struct net80211_channel *channel)
1347 {
1348  int ret;
1349 
1350  if (ah->ah_radio == AR5K_RF5110)
1352  else
1354 
1355  return ret;
1356 }
1357 
1359 {
1361 
1362  return 0;
1363 }
1364 
1365 /********************\
1366  Misc PHY functions
1367 \********************/
1368 
1369 /*
1370  * Get the PHY Chip revision
1371  */
1372 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1373 {
1374  unsigned int i;
1375  u32 srev;
1376  u16 ret;
1377 
1378  /*
1379  * Set the radio chip access register
1380  */
1381  switch (chan) {
1382  case CHANNEL_2GHZ:
1384  break;
1385  case CHANNEL_5GHZ:
1387  break;
1388  default:
1389  return 0;
1390  }
1391 
1392  mdelay(2);
1393 
1394  /* ...wait until PHY is ready and read the selected radio revision */
1395  ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1396 
1397  for (i = 0; i < 8; i++)
1398  ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1399 
1400  if (ah->ah_version == AR5K_AR5210) {
1401  srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1402  ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1403  } else {
1404  srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1405  ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1406  ((srev & 0x0f) << 4), 8);
1407  }
1408 
1409  /* Reset to the 5GHz mode */
1411 
1412  return ret;
1413 }
1414 
1415 void /*TODO:Boundary check*/
1416 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
1417 {
1418  if (ah->ah_version != AR5K_AR5210)
1420 }
1421 
1422 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1423 {
1424  if (ah->ah_version != AR5K_AR5210)
1426 
1427  return 0; /*XXX: What do we return for 5210 ?*/
1428 }
1429 
1430 
1431 /****************\
1432 * TX power setup *
1433 \****************/
1434 
1435 /*
1436  * Helper functions
1437  */
1438 
1439 /*
1440  * Do linear interpolation between two given (x, y) points
1441  */
1442 static s16
1443 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1444  s16 y_left, s16 y_right)
1445 {
1446  s16 ratio, result;
1447 
1448  /* Avoid divide by zero and skip interpolation
1449  * if we have the same point */
1450  if ((x_left == x_right) || (y_left == y_right))
1451  return y_left;
1452 
1453  /*
1454  * Since we use ints and not fps, we need to scale up in
1455  * order to get a sane ratio value (or else we 'll eg. get
1456  * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1457  * to have some accuracy both for 0.5 and 0.25 steps.
1458  */
1459  ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1460 
1461  /* Now scale down to be in range */
1462  result = y_left + (ratio * (target - x_left) / 100);
1463 
1464  return result;
1465 }
1466 
1467 /*
1468  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1469  *
1470  * Since we have the top of the curve and we draw the line below
1471  * until we reach 1 (1 pcdac step) we need to know which point
1472  * (x value) that is so that we don't go below y axis and have negative
1473  * pcdac values when creating the curve, or fill the table with zeroes.
1474  */
1475 static s16
1476 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1477  const s16 *pwrL, const s16 *pwrR)
1478 {
1479  s8 tmp;
1480  s16 min_pwrL, min_pwrR;
1481  s16 pwr_i;
1482 
1483  if (pwrL[0] == pwrL[1])
1484  min_pwrL = pwrL[0];
1485  else {
1486  pwr_i = pwrL[0];
1487  do {
1488  pwr_i--;
1490  pwrL[0], pwrL[1],
1491  stepL[0], stepL[1]);
1492  } while (tmp > 1);
1493 
1494  min_pwrL = pwr_i;
1495  }
1496 
1497  if (pwrR[0] == pwrR[1])
1498  min_pwrR = pwrR[0];
1499  else {
1500  pwr_i = pwrR[0];
1501  do {
1502  pwr_i--;
1504  pwrR[0], pwrR[1],
1505  stepR[0], stepR[1]);
1506  } while (tmp > 1);
1507 
1508  min_pwrR = pwr_i;
1509  }
1510 
1511  /* Keep the right boundary so that it works for both curves */
1512  return max(min_pwrL, min_pwrR);
1513 }
1514 
1515 /*
1516  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1517  * Power to PCDAC curve.
1518  *
1519  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1520  * steps (offsets) on y axis. Power can go up to 31.5dB and max
1521  * PCDAC/PDADC step for each curve is 64 but we can write more than
1522  * one curves on hw so we can go up to 128 (which is the max step we
1523  * can write on the final table).
1524  *
1525  * We write y values (PCDAC/PDADC steps) on hw.
1526  */
1527 static void
1529  const s16 *pwr, const u8 *vpd,
1530  u8 num_points,
1531  u8 *vpd_table, u8 type)
1532 {
1533  u8 idx[2] = { 0, 1 };
1534  s16 pwr_i = 2*pmin;
1535  int i;
1536 
1537  if (num_points < 2)
1538  return;
1539 
1540  /* We want the whole line, so adjust boundaries
1541  * to cover the entire power range. Note that
1542  * power values are already 0.25dB so no need
1543  * to multiply pwr_i by 2 */
1545  pwr_i = pmin;
1546  pmin = 0;
1547  pmax = 63;
1548  }
1549 
1550  /* Find surrounding turning points (TPs)
1551  * and interpolate between them */
1552  for (i = 0; (i <= (u16) (pmax - pmin)) &&
1553  (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1554 
1555  /* We passed the right TP, move to the next set of TPs
1556  * if we pass the last TP, extrapolate above using the last
1557  * two TPs for ratio */
1558  if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1559  idx[0]++;
1560  idx[1]++;
1561  }
1562 
1563  vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1564  pwr[idx[0]], pwr[idx[1]],
1565  vpd[idx[0]], vpd[idx[1]]);
1566 
1567  /* Increase by 0.5dB
1568  * (0.25 dB units) */
1569  pwr_i += 2;
1570  }
1571 }
1572 
1573 /*
1574  * Get the surrounding per-channel power calibration piers
1575  * for a given frequency so that we can interpolate between
1576  * them and come up with an apropriate dataset for our current
1577  * channel.
1578  */
1579 static void
1581  struct net80211_channel *channel,
1582  struct ath5k_chan_pcal_info **pcinfo_l,
1583  struct ath5k_chan_pcal_info **pcinfo_r)
1584 {
1585  struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1586  struct ath5k_chan_pcal_info *pcinfo;
1587  u8 idx_l, idx_r;
1588  u8 mode, max, i;
1589  u32 target = channel->center_freq;
1590 
1591  idx_l = 0;
1592  idx_r = 0;
1593 
1594  if (!(channel->hw_value & CHANNEL_OFDM)) {
1595  pcinfo = ee->ee_pwr_cal_b;
1596  mode = AR5K_EEPROM_MODE_11B;
1597  } else if (channel->hw_value & CHANNEL_2GHZ) {
1598  pcinfo = ee->ee_pwr_cal_g;
1599  mode = AR5K_EEPROM_MODE_11G;
1600  } else {
1601  pcinfo = ee->ee_pwr_cal_a;
1602  mode = AR5K_EEPROM_MODE_11A;
1603  }
1604  max = ee->ee_n_piers[mode] - 1;
1605 
1606  /* Frequency is below our calibrated
1607  * range. Use the lowest power curve
1608  * we have */
1609  if (target < pcinfo[0].freq) {
1610  idx_l = idx_r = 0;
1611  goto done;
1612  }
1613 
1614  /* Frequency is above our calibrated
1615  * range. Use the highest power curve
1616  * we have */
1617  if (target > pcinfo[max].freq) {
1618  idx_l = idx_r = max;
1619  goto done;
1620  }
1621 
1622  /* Frequency is inside our calibrated
1623  * channel range. Pick the surrounding
1624  * calibration piers so that we can
1625  * interpolate */
1626  for (i = 0; i <= max; i++) {
1627 
1628  /* Frequency matches one of our calibration
1629  * piers, no need to interpolate, just use
1630  * that calibration pier */
1631  if (pcinfo[i].freq == target) {
1632  idx_l = idx_r = i;
1633  goto done;
1634  }
1635 
1636  /* We found a calibration pier that's above
1637  * frequency, use this pier and the previous
1638  * one to interpolate */
1639  if (target < pcinfo[i].freq) {
1640  idx_r = i;
1641  idx_l = idx_r - 1;
1642  goto done;
1643  }
1644  }
1645 
1646 done:
1647  *pcinfo_l = &pcinfo[idx_l];
1648  *pcinfo_r = &pcinfo[idx_r];
1649 
1650  return;
1651 }
1652 
1653 /*
1654  * Get the surrounding per-rate power calibration data
1655  * for a given frequency and interpolate between power
1656  * values to set max target power supported by hw for
1657  * each rate.
1658  */
1659 static void
1661  struct net80211_channel *channel,
1662  struct ath5k_rate_pcal_info *rates)
1663 {
1664  struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1665  struct ath5k_rate_pcal_info *rpinfo;
1666  u8 idx_l, idx_r;
1667  u8 mode, max, i;
1668  u32 target = channel->center_freq;
1669 
1670  idx_l = 0;
1671  idx_r = 0;
1672 
1673  if (!(channel->hw_value & CHANNEL_OFDM)) {
1674  rpinfo = ee->ee_rate_tpwr_b;
1675  mode = AR5K_EEPROM_MODE_11B;
1676  } else if (channel->hw_value & CHANNEL_2GHZ) {
1677  rpinfo = ee->ee_rate_tpwr_g;
1678  mode = AR5K_EEPROM_MODE_11G;
1679  } else {
1680  rpinfo = ee->ee_rate_tpwr_a;
1681  mode = AR5K_EEPROM_MODE_11A;
1682  }
1683  max = ee->ee_rate_target_pwr_num[mode] - 1;
1684 
1685  /* Get the surrounding calibration
1686  * piers - same as above */
1687  if (target < rpinfo[0].freq) {
1688  idx_l = idx_r = 0;
1689  goto done;
1690  }
1691 
1692  if (target > rpinfo[max].freq) {
1693  idx_l = idx_r = max;
1694  goto done;
1695  }
1696 
1697  for (i = 0; i <= max; i++) {
1698 
1699  if (rpinfo[i].freq == target) {
1700  idx_l = idx_r = i;
1701  goto done;
1702  }
1703 
1704  if (target < rpinfo[i].freq) {
1705  idx_r = i;
1706  idx_l = idx_r - 1;
1707  goto done;
1708  }
1709  }
1710 
1711 done:
1712  /* Now interpolate power value, based on the frequency */
1713  rates->freq = target;
1714 
1715  rates->target_power_6to24 =
1716  ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1717  rpinfo[idx_r].freq,
1718  rpinfo[idx_l].target_power_6to24,
1719  rpinfo[idx_r].target_power_6to24);
1720 
1721  rates->target_power_36 =
1722  ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1723  rpinfo[idx_r].freq,
1724  rpinfo[idx_l].target_power_36,
1725  rpinfo[idx_r].target_power_36);
1726 
1727  rates->target_power_48 =
1728  ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1729  rpinfo[idx_r].freq,
1730  rpinfo[idx_l].target_power_48,
1731  rpinfo[idx_r].target_power_48);
1732 
1733  rates->target_power_54 =
1734  ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1735  rpinfo[idx_r].freq,
1736  rpinfo[idx_l].target_power_54,
1737  rpinfo[idx_r].target_power_54);
1738 }
1739 
1740 /*
1741  * Get the max edge power for this channel if
1742  * we have such data from EEPROM's Conformance Test
1743  * Limits (CTL), and limit max power if needed.
1744  *
1745  * FIXME: Only works for world regulatory domains
1746  */
1747 static void
1749  struct net80211_channel *channel)
1750 {
1751  struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1752  struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
1753  u8 *ctl_val = ee->ee_ctl;
1754  s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
1755  s16 edge_pwr = 0;
1756  u8 rep_idx;
1757  u8 i, ctl_mode;
1758  u8 ctl_idx = 0xFF;
1759  u32 target = channel->center_freq;
1760 
1761  /* Find out a CTL for our mode that's not mapped
1762  * on a specific reg domain.
1763  *
1764  * TODO: Map our current reg domain to one of the 3 available
1765  * reg domain ids so that we can support more CTLs. */
1766  switch (channel->hw_value & CHANNEL_MODES) {
1767  case CHANNEL_A:
1768  ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN;
1769  break;
1770  case CHANNEL_G:
1771  ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN;
1772  break;
1773  case CHANNEL_B:
1774  ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN;
1775  break;
1776  case CHANNEL_T:
1778  break;
1779  case CHANNEL_TG:
1781  break;
1782  case CHANNEL_XR:
1783  /* Fall through */
1784  default:
1785  return;
1786  }
1787 
1788  for (i = 0; i < ee->ee_ctls; i++) {
1789  if (ctl_val[i] == ctl_mode) {
1790  ctl_idx = i;
1791  break;
1792  }
1793  }
1794 
1795  /* If we have a CTL dataset available grab it and find the
1796  * edge power for our frequency */
1797  if (ctl_idx == 0xFF)
1798  return;
1799 
1800  /* Edge powers are sorted by frequency from lower
1801  * to higher. Each CTL corresponds to 8 edge power
1802  * measurements. */
1803  rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
1804 
1805  /* Don't do boundaries check because we
1806  * might have more that one bands defined
1807  * for this mode */
1808 
1809  /* Get the edge power that's closer to our
1810  * frequency */
1811  for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
1812  rep_idx += i;
1813  if (target <= rep[rep_idx].freq)
1814  edge_pwr = (s16) rep[rep_idx].edge;
1815  }
1816 
1817  if (edge_pwr) {
1818  ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
1819  }
1820 }
1821 
1822 
1823 /*
1824  * Power to PCDAC table functions
1825  */
1826 
1827 /*
1828  * Fill Power to PCDAC table on RF5111
1829  *
1830  * No further processing is needed for RF5111, the only thing we have to
1831  * do is fill the values below and above calibration range since eeprom data
1832  * may not cover the entire PCDAC table.
1833  */
1834 static void
1836  s16 *table_max)
1837 {
1838  u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1839  u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
1840  u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
1841  s16 min_pwr, max_pwr;
1842 
1843  /* Get table boundaries */
1844  min_pwr = table_min[0];
1845  pcdac_0 = pcdac_tmp[0];
1846 
1847  max_pwr = table_max[0];
1848  pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
1849 
1850  /* Extrapolate below minimum using pcdac_0 */
1851  pcdac_i = 0;
1852  for (i = 0; i < min_pwr; i++)
1853  pcdac_out[pcdac_i++] = pcdac_0;
1854 
1855  /* Copy values from pcdac_tmp */
1856  pwr_idx = min_pwr;
1857  for (i = 0 ; pwr_idx <= max_pwr &&
1858  pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
1859  pcdac_out[pcdac_i++] = pcdac_tmp[i];
1860  pwr_idx++;
1861  }
1862 
1863  /* Extrapolate above maximum */
1864  while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
1865  pcdac_out[pcdac_i++] = pcdac_n;
1866 
1867 }
1868 
1869 /*
1870  * Combine available XPD Curves and fill Linear Power to PCDAC table
1871  * on RF5112
1872  *
1873  * RFX112 can have up to 2 curves (one for low txpower range and one for
1874  * higher txpower range). We need to put them both on pcdac_out and place
1875  * them in the correct location. In case we only have one curve available
1876  * just fit it on pcdac_out (it's supposed to cover the entire range of
1877  * available pwr levels since it's always the higher power curve). Extrapolate
1878  * below and above final table if needed.
1879  */
1880 static void
1882  s16 *table_max, u8 pdcurves)
1883 {
1884  u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1885  u8 *pcdac_low_pwr;
1886  u8 *pcdac_high_pwr;
1887  u8 *pcdac_tmp;
1888  u8 pwr;
1889  s16 max_pwr_idx;
1890  s16 min_pwr_idx;
1891  s16 mid_pwr_idx = 0;
1892  /* Edge flag turs on the 7nth bit on the PCDAC
1893  * to delcare the higher power curve (force values
1894  * to be greater than 64). If we only have one curve
1895  * we don't need to set this, if we have 2 curves and
1896  * fill the table backwards this can also be used to
1897  * switch from higher power curve to lower power curve */
1898  u8 edge_flag;
1899  int i;
1900 
1901  /* When we have only one curve available
1902  * that's the higher power curve. If we have
1903  * two curves the first is the high power curve
1904  * and the next is the low power curve. */
1905  if (pdcurves > 1) {
1906  pcdac_low_pwr = ah->ah_txpower.tmpL[1];
1907  pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1908  mid_pwr_idx = table_max[1] - table_min[1] - 1;
1909  max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1910 
1911  /* If table size goes beyond 31.5dB, keep the
1912  * upper 31.5dB range when setting tx power.
1913  * Note: 126 = 31.5 dB in quarter dB steps */
1914  if (table_max[0] - table_min[1] > 126)
1915  min_pwr_idx = table_max[0] - 126;
1916  else
1917  min_pwr_idx = table_min[1];
1918 
1919  /* Since we fill table backwards
1920  * start from high power curve */
1921  pcdac_tmp = pcdac_high_pwr;
1922 
1923  edge_flag = 0x40;
1924  } else {
1925  pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
1926  pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1927  min_pwr_idx = table_min[0];
1928  max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1929  pcdac_tmp = pcdac_high_pwr;
1930  edge_flag = 0;
1931  }
1932 
1933  /* This is used when setting tx power*/
1934  ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
1935 
1936  /* Fill Power to PCDAC table backwards */
1937  pwr = max_pwr_idx;
1938  for (i = 63; i >= 0; i--) {
1939  /* Entering lower power range, reset
1940  * edge flag and set pcdac_tmp to lower
1941  * power curve.*/
1942  if (edge_flag == 0x40 &&
1943  (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
1944  edge_flag = 0x00;
1945  pcdac_tmp = pcdac_low_pwr;
1946  pwr = mid_pwr_idx/2;
1947  }
1948 
1949  /* Don't go below 1, extrapolate below if we have
1950  * already swithced to the lower power curve -or
1951  * we only have one curve and edge_flag is zero
1952  * anyway */
1953  if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
1954  while (i >= 0) {
1955  pcdac_out[i] = pcdac_out[i + 1];
1956  i--;
1957  }
1958  break;
1959  }
1960 
1961  pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
1962 
1963  /* Extrapolate above if pcdac is greater than
1964  * 126 -this can happen because we OR pcdac_out
1965  * value with edge_flag on high power curve */
1966  if (pcdac_out[i] > 126)
1967  pcdac_out[i] = 126;
1968 
1969  /* Decrease by a 0.5dB step */
1970  pwr--;
1971  }
1972 }
1973 
1974 /* Write PCDAC values on hw */
1975 static void
1977 {
1978  u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1979  int i;
1980 
1981  /*
1982  * Write TX power values
1983  */
1984  for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
1986  (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
1987  (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
1989  }
1990 }
1991 
1992 
1993 /*
1994  * Power to PDADC table functions
1995  */
1996 
1997 /*
1998  * Set the gain boundaries and create final Power to PDADC table
1999  *
2000  * We can have up to 4 pd curves, we need to do a simmilar process
2001  * as we do for RF5112. This time we don't have an edge_flag but we
2002  * set the gain boundaries on a separate register.
2003  */
2004 static void
2006  s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2007 {
2008  u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2009  u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2010  u8 *pdadc_tmp;
2011  s16 pdadc_0;
2012  u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2013  u8 pd_gain_overlap;
2014 
2015  /* Note: Register value is initialized on initvals
2016  * there is no feedback from hw.
2017  * XXX: What about pd_gain_overlap from EEPROM ? */
2018  pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2020 
2021  /* Create final PDADC table */
2022  for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2023  pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2024 
2025  if (pdg == pdcurves - 1)
2026  /* 2 dB boundary stretch for last
2027  * (higher power) curve */
2028  gain_boundaries[pdg] = pwr_max[pdg] + 4;
2029  else
2030  /* Set gain boundary in the middle
2031  * between this curve and the next one */
2032  gain_boundaries[pdg] =
2033  (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2034 
2035  /* Sanity check in case our 2 db stretch got out of
2036  * range. */
2037  if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2038  gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2039 
2040  /* For the first curve (lower power)
2041  * start from 0 dB */
2042  if (pdg == 0)
2043  pdadc_0 = 0;
2044  else
2045  /* For the other curves use the gain overlap */
2046  pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2047  pd_gain_overlap;
2048 
2049  /* Force each power step to be at least 0.5 dB */
2050  if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2051  pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2052  else
2053  pwr_step = 1;
2054 
2055  /* If pdadc_0 is negative, we need to extrapolate
2056  * below this pdgain by a number of pwr_steps */
2057  while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2058  s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2059  pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2060  pdadc_0++;
2061  }
2062 
2063  /* Set last pwr level, using gain boundaries */
2064  pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2065  /* Limit it to be inside pwr range */
2066  table_size = pwr_max[pdg] - pwr_min[pdg];
2067  max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2068 
2069  /* Fill pdadc_out table */
2070  while (pdadc_0 < max_idx)
2071  pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2072 
2073  /* Need to extrapolate above this pdgain? */
2074  if (pdadc_n <= max_idx)
2075  continue;
2076 
2077  /* Force each power step to be at least 0.5 dB */
2078  if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2079  pwr_step = pdadc_tmp[table_size - 1] -
2080  pdadc_tmp[table_size - 2];
2081  else
2082  pwr_step = 1;
2083 
2084  /* Extrapolate above */
2085  while ((pdadc_0 < (s16) pdadc_n) &&
2086  (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2087  s16 tmp = pdadc_tmp[table_size - 1] +
2088  (pdadc_0 - max_idx) * pwr_step;
2089  pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2090  pdadc_0++;
2091  }
2092  }
2093 
2094  while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2095  gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2096  pdg++;
2097  }
2098 
2099  while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2100  pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2101  pdadc_i++;
2102  }
2103 
2104  /* Set gain boundaries */
2106  AR5K_REG_SM(pd_gain_overlap,
2108  AR5K_REG_SM(gain_boundaries[0],
2110  AR5K_REG_SM(gain_boundaries[1],
2112  AR5K_REG_SM(gain_boundaries[2],
2114  AR5K_REG_SM(gain_boundaries[3],
2117 
2118  /* Used for setting rate power table */
2119  ah->ah_txpower.txp_min_idx = pwr_min[0];
2120 
2121 }
2122 
2123 /* Write PDADC values on hw */
2124 static void
2126  u8 pdcurves, u8 *pdg_to_idx)
2127 {
2128  u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2129  u32 reg;
2130  u8 i;
2131 
2132  /* Select the right pdgain curves */
2133 
2134  /* Clear current settings */
2140 
2141  /*
2142  * Use pd_gains curve from eeprom
2143  *
2144  * This overrides the default setting from initvals
2145  * in case some vendors (e.g. Zcomax) don't use the default
2146  * curves. If we don't honor their settings we 'll get a
2147  * 5dB (1 * gain overlap ?) drop.
2148  */
2150 
2151  switch (pdcurves) {
2152  case 3:
2153  reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2154  /* Fall through */
2155  case 2:
2156  reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2157  /* Fall through */
2158  case 1:
2159  reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2160  break;
2161  }
2163 
2164  /*
2165  * Write TX power values
2166  */
2167  for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2169  ((pdadc_out[4*i + 0] & 0xff) << 0) |
2170  ((pdadc_out[4*i + 1] & 0xff) << 8) |
2171  ((pdadc_out[4*i + 2] & 0xff) << 16) |
2172  ((pdadc_out[4*i + 3] & 0xff) << 24),
2174  }
2175 }
2176 
2177 
2178 /*
2179  * Common code for PCDAC/PDADC tables
2180  */
2181 
2182 /*
2183  * This is the main function that uses all of the above
2184  * to set PCDAC/PDADC table on hw for the current channel.
2185  * This table is used for tx power calibration on the basband,
2186  * without it we get weird tx power levels and in some cases
2187  * distorted spectral mask
2188  */
2189 static int
2191  struct net80211_channel *channel,
2192  u8 ee_mode, u8 type)
2193 {
2194  struct ath5k_pdgain_info *pdg_L, *pdg_R;
2195  struct ath5k_chan_pcal_info *pcinfo_L;
2196  struct ath5k_chan_pcal_info *pcinfo_R;
2197  struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2198  u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2199  s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2200  s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2201  u8 *tmpL;
2202  u8 *tmpR;
2203  u32 target = channel->center_freq;
2204  int pdg, i;
2205 
2206  /* Get surounding freq piers for this channel */
2208  &pcinfo_L,
2209  &pcinfo_R);
2210 
2211  /* Loop over pd gain curves on
2212  * surounding freq piers by index */
2213  for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2214 
2215  /* Fill curves in reverse order
2216  * from lower power (max gain)
2217  * to higher power. Use curve -> idx
2218  * backmaping we did on eeprom init */
2219  u8 idx = pdg_curve_to_idx[pdg];
2220 
2221  /* Grab the needed curves by index */
2222  pdg_L = &pcinfo_L->pd_curves[idx];
2223  pdg_R = &pcinfo_R->pd_curves[idx];
2224 
2225  /* Initialize the temp tables */
2226  tmpL = ah->ah_txpower.tmpL[pdg];
2227  tmpR = ah->ah_txpower.tmpR[pdg];
2228 
2229  /* Set curve's x boundaries and create
2230  * curves so that they cover the same
2231  * range (if we don't do that one table
2232  * will have values on some range and the
2233  * other one won't have any so interpolation
2234  * will fail) */
2235  table_min[pdg] = min(pdg_L->pd_pwr[0],
2236  pdg_R->pd_pwr[0]) / 2;
2237 
2238  table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2239  pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2240 
2241  /* Now create the curves on surrounding channels
2242  * and interpolate if needed to get the final
2243  * curve for this gain on this channel */
2244  switch (type) {
2246  /* Override min/max so that we don't loose
2247  * accuracy (don't divide by 2) */
2248  table_min[pdg] = min(pdg_L->pd_pwr[0],
2249  pdg_R->pd_pwr[0]);
2250 
2251  table_max[pdg] =
2252  max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2253  pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2254 
2255  /* Override minimum so that we don't get
2256  * out of bounds while extrapolating
2257  * below. Don't do this when we have 2
2258  * curves and we are on the high power curve
2259  * because table_min is ok in this case */
2260  if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2261 
2262  table_min[pdg] =
2264  pdg_R->pd_step,
2265  pdg_L->pd_pwr,
2266  pdg_R->pd_pwr);
2267 
2268  /* Don't go too low because we will
2269  * miss the upper part of the curve.
2270  * Note: 126 = 31.5dB (max power supported)
2271  * in 0.25dB units */
2272  if (table_max[pdg] - table_min[pdg] > 126)
2273  table_min[pdg] = table_max[pdg] - 126;
2274  }
2275 
2276  /* Fall through */
2279 
2280  ath5k_create_power_curve(table_min[pdg],
2281  table_max[pdg],
2282  pdg_L->pd_pwr,
2283  pdg_L->pd_step,
2284  pdg_L->pd_points, tmpL, type);
2285 
2286  /* We are in a calibration
2287  * pier, no need to interpolate
2288  * between freq piers */
2289  if (pcinfo_L == pcinfo_R)
2290  continue;
2291 
2292  ath5k_create_power_curve(table_min[pdg],
2293  table_max[pdg],
2294  pdg_R->pd_pwr,
2295  pdg_R->pd_step,
2296  pdg_R->pd_points, tmpR, type);
2297  break;
2298  default:
2299  return -EINVAL;
2300  }
2301 
2302  /* Interpolate between curves
2303  * of surounding freq piers to
2304  * get the final curve for this
2305  * pd gain. Re-use tmpL for interpolation
2306  * output */
2307  for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2308  (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2309  tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2310  (s16) pcinfo_L->freq,
2311  (s16) pcinfo_R->freq,
2312  (s16) tmpL[i],
2313  (s16) tmpR[i]);
2314  }
2315  }
2316 
2317  /* Now we have a set of curves for this
2318  * channel on tmpL (x range is table_max - table_min
2319  * and y values are tmpL[pdg][]) sorted in the same
2320  * order as EEPROM (because we've used the backmaping).
2321  * So for RF5112 it's from higher power to lower power
2322  * and for RF2413 it's from lower power to higher power.
2323  * For RF5111 we only have one curve. */
2324 
2325  /* Fill min and max power levels for this
2326  * channel by interpolating the values on
2327  * surounding channels to complete the dataset */
2328  ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2329  (s16) pcinfo_L->freq,
2330  (s16) pcinfo_R->freq,
2331  pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2332 
2333  ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2334  (s16) pcinfo_L->freq,
2335  (s16) pcinfo_R->freq,
2336  pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2337 
2338  /* We are ready to go, fill PCDAC/PDADC
2339  * table and write settings on hardware */
2340  switch (type) {
2342  /* For RF5112 we can have one or two curves
2343  * and each curve covers a certain power lvl
2344  * range so we need to do some more processing */
2345  ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2346  ee->ee_pd_gains[ee_mode]);
2347 
2348  /* Set txp.offset so that we can
2349  * match max power value with max
2350  * table index */
2351  ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2352 
2353  /* Write settings on hw */
2355  break;
2357  /* We are done for RF5111 since it has only
2358  * one curve, just fit the curve on the table */
2359  ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2360 
2361  /* No rate powertable adjustment for RF5111 */
2362  ah->ah_txpower.txp_min_idx = 0;
2363  ah->ah_txpower.txp_offset = 0;
2364 
2365  /* Write settings on hw */
2367  break;
2369  /* Set PDADC boundaries and fill
2370  * final PDADC table */
2371  ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2372  ee->ee_pd_gains[ee_mode]);
2373 
2374  /* Write settings on hw */
2375  ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2376 
2377  /* Set txp.offset, note that table_min
2378  * can be negative */
2379  ah->ah_txpower.txp_offset = table_min[0];
2380  break;
2381  default:
2382  return -EINVAL;
2383  }
2384 
2385  return 0;
2386 }
2387 
2388 
2389 /*
2390  * Per-rate tx power setting
2391  *
2392  * This is the code that sets the desired tx power (below
2393  * maximum) on hw for each rate (we also have TPC that sets
2394  * power per packet). We do that by providing an index on the
2395  * PCDAC/PDADC table we set up.
2396  */
2397 
2398 /*
2399  * Set rate power table
2400  *
2401  * For now we only limit txpower based on maximum tx power
2402  * supported by hw (what's inside rate_info). We need to limit
2403  * this even more, based on regulatory domain etc.
2404  *
2405  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2406  * and is indexed as follows:
2407  * rates[0] - rates[7] -> OFDM rates
2408  * rates[8] - rates[14] -> CCK rates
2409  * rates[15] -> XR rates (they all have the same power)
2410  */
2411 static void
2413  struct ath5k_rate_pcal_info *rate_info,
2414  u8 ee_mode)
2415 {
2416  unsigned int i;
2417  u16 *rates;
2418 
2419  /* max_pwr is power level we got from driver/user in 0.5dB
2420  * units, switch to 0.25dB units so we can compare */
2421  max_pwr *= 2;
2422  max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2423 
2424  /* apply rate limits */
2425  rates = ah->ah_txpower.txp_rates_power_table;
2426 
2427  /* OFDM rates 6 to 24Mb/s */
2428  for (i = 0; i < 5; i++)
2429  rates[i] = min(max_pwr, rate_info->target_power_6to24);
2430 
2431  /* Rest OFDM rates */
2432  rates[5] = min(rates[0], rate_info->target_power_36);
2433  rates[6] = min(rates[0], rate_info->target_power_48);
2434  rates[7] = min(rates[0], rate_info->target_power_54);
2435 
2436  /* CCK rates */
2437  /* 1L */
2438  rates[8] = min(rates[0], rate_info->target_power_6to24);
2439  /* 2L */
2440  rates[9] = min(rates[0], rate_info->target_power_36);
2441  /* 2S */
2442  rates[10] = min(rates[0], rate_info->target_power_36);
2443  /* 5L */
2444  rates[11] = min(rates[0], rate_info->target_power_48);
2445  /* 5S */
2446  rates[12] = min(rates[0], rate_info->target_power_48);
2447  /* 11L */
2448  rates[13] = min(rates[0], rate_info->target_power_54);
2449  /* 11S */
2450  rates[14] = min(rates[0], rate_info->target_power_54);
2451 
2452  /* XR rates */
2453  rates[15] = min(rates[0], rate_info->target_power_6to24);
2454 
2455  /* CCK rates have different peak to average ratio
2456  * so we have to tweak their power so that gainf
2457  * correction works ok. For this we use OFDM to
2458  * CCK delta from eeprom */
2459  if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2460  (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2461  for (i = 8; i <= 15; i++)
2462  rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2463 
2464  ah->ah_txpower.txp_min_pwr = rates[7];
2465  ah->ah_txpower.txp_max_pwr = rates[0];
2466  ah->ah_txpower.txp_ofdm = rates[7];
2467 }
2468 
2469 
2470 /*
2471  * Set transmition power
2472  */
2473 int
2475  u8 ee_mode, u8 txpower)
2476 {
2477  struct ath5k_rate_pcal_info rate_info;
2478  u8 type;
2479  int ret;
2480 
2481  if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2482  DBG("ath5k: invalid tx power %d\n", txpower);
2483  return -EINVAL;
2484  }
2485  if (txpower == 0)
2486  txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2487 
2488  /* Reset TX power values */
2489  memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2490  ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2491  ah->ah_txpower.txp_min_pwr = 0;
2492  ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2493 
2494  /* Initialize TX power table */
2495  switch (ah->ah_radio) {
2496  case AR5K_RF5111:
2498  break;
2499  case AR5K_RF5112:
2501  break;
2502  case AR5K_RF2413:
2503  case AR5K_RF5413:
2504  case AR5K_RF2316:
2505  case AR5K_RF2317:
2506  case AR5K_RF2425:
2508  break;
2509  default:
2510  return -EINVAL;
2511  }
2512 
2513  /* FIXME: Only on channel/mode change */
2514  ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2515  if (ret)
2516  return ret;
2517 
2518  /* Limit max power if we have a CTL available */
2520 
2521  /* FIXME: Tx power limit for this regdomain
2522  * XXX: Mac80211/CRDA will do that anyway ? */
2523 
2524  /* FIXME: Antenna reduction stuff */
2525 
2526  /* FIXME: Limit power on turbo modes */
2527 
2528  /* FIXME: TPC scale reduction */
2529 
2530  /* Get surounding channels for per-rate power table
2531  * calibration */
2532  ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2533 
2534  /* Setup rate power table */
2535  ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2536 
2537  /* Write rate power table on hw */
2539  AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2541 
2543  AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2545 
2547  AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2549 
2551  AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2553 
2554  /* FIXME: TPC support */
2555  if (ah->ah_txpower.txp_tpc) {
2558 
2563  AR5K_TPC);
2564  } else {
2567  }
2568 
2569  return 0;
2570 }
2571 
2572 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
2573 {
2574  struct net80211_channel *channel = ah->ah_current_channel;
2575 
2576  DBG2("ath5k: changing txpower to %d\n", txpower);
2577 
2578  return ath5k_hw_txpower(ah, channel, mode, txpower);
2579 }
2580 
2581 #undef _ATH5K_PHY
#define AR5K_PHY_SHIFT_5GHZ
Definition: reg.h:1884
#define AR5K_PHY_IQRES_CAL_CORR
Definition: reg.h:2418
#define u16
Definition: vga.h:20
uint16_t u16
Definition: stdint.h:21
static const struct ath5k_rf_reg rf_regs_2413[]
Definition: rfbuffer.h:643
int8_t s8
Definition: stdint.h:18
uint32_t c
Definition: md4.c:30
#define AR5K_PHY_AGCCTL_NF
Definition: reg.h:2030
#define AR5K_PHY_PAPD_PROBE_GAINF_S
Definition: reg.h:2254
#define EINVAL
Invalid argument.
Definition: errno.h:428
u8 ee_pd_gains[AR5K_EEPROM_N_MODES]
Definition: eeprom.h:421
static const struct ath5k_rf_reg rf_regs_5112a[]
Definition: rfbuffer.h:479
#define AR5K_PHY_TPC_RG1_PDGAIN_2
Definition: reg.h:2568
#define AR5K_PHY_FRAME_CTL
Definition: reg.h:2273
int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct net80211_channel *channel, unsigned int mode)
Definition: ath5k_phy.c:514
#define AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4
Definition: reg.h:2582
#define AR5K_PHY_SIG_FIRPWR
Definition: reg.h:2012
int16_t s16
Definition: stdint.h:20
static const void const void void * result
Definition: crypto.h:335
u16 rfg_register
Definition: rfgain.h:27
static void ath5k_create_power_curve(s16 pmin, s16 pmax, const s16 *pwr, const u8 *vpd, u8 num_points, u8 *vpd_table, u8 type)
Definition: ath5k_phy.c:1528
#define AR5K_PHY_TXPOWER_RATE_MAX
Definition: reg.h:2263
struct ath5k_pdgain_info * pd_curves
Definition: eeprom.h:340
static unsigned int unsigned int reg
Definition: myson.h:162
static const struct ath5k_rf_reg rf_regs_5112[]
Definition: rfbuffer.h:309
#define AR5K_PHY_PAPD_PROBE_TXPOWER
Definition: reg.h:2244
#define AR5K_PHY_AGCCOARSE
Definition: reg.h:2019
#define AR5K_EEPROM_MODE_11G
Definition: eeprom.h:64
struct option_descriptor set[0]
Definition: nvo_cmd.c:111
#define AR5K_REG_WAIT(_i)
Definition: ath5k.h:133
int32_t s32
Definition: stdint.h:22
static void ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16 *table_min, s16 *table_max)
Definition: ath5k_phy.c:1835
u8 ee_ctl[AR5K_EEPROM_MAX_CTLS]
Definition: eeprom.h:438
#define AR5K_EEPROM_MODE_11A
Definition: eeprom.h:62
#define AR5K_PHY_AGC_DISABLE
Definition: reg.h:1907
u8 ee_pdc_to_idx[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PD_GAINS]
Definition: eeprom.h:423
#define AR5K_BEACON_ENABLE
Definition: reg.h:1248
#define AR5K_PHY_PAPD_PROBE
Definition: reg.h:2240
#define AR5K_PHY_IQ_CORR_ENABLE
Definition: reg.h:2194
#define AR5K_PHY_PAPD_PROBE_TYPE
Definition: reg.h:2248
#define AR5K_PHY_ADCSAT
Definition: reg.h:2051
static void ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 pdcurves, u8 *pdg_to_idx)
Definition: ath5k_phy.c:2125
#define AR5K_TXPOWER_CCK(_r, _v)
Definition: ath5k.h:541
u32 data1
Definition: ar9003_mac.h:71
#define AR5K_INI_RFGAIN_5GHZ
Definition: ath5k.h:139
static u32 ath5k_hw_bitswap(u32 val, unsigned int bits)
Definition: ath5k.h:1265
static const struct ath5k_rf_reg rf_regs_2425[]
Definition: rfbuffer.h:938
#define AR5K_PHY_SHIFT_2GHZ
Definition: reg.h:1883
#define AR5K_GAIN_CCK_PROBE_CORR
Definition: rfgain.h:449
static void ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16 *table_min, s16 *table_max, u8 pdcurves)
Definition: ath5k_phy.c:1881
#define AR5K_PHY_PAPD_PROBE_TYPE_CCK
Definition: reg.h:2252
static const struct ath5k_ini_rfbuffer rfb_5413[]
Definition: rfbuffer.h:837
#define AR5K_MAX_RF_BANKS
Definition: ath5k.h:950
static int min(int x, int y)
Definition: ath5k_phy.c:38
static const struct ath5k_ini_rfbuffer rfb_2417[]
Definition: rfbuffer.h:1107
#define AR5K_PHY_AGCCTL_CAL
Definition: reg.h:2029
u8 ee_rate_target_pwr_num[AR5K_EEPROM_N_MODES]
Definition: eeprom.h:431
u16 ee_x_gain[AR5K_EEPROM_N_MODES]
Definition: eeprom.h:410
#define AR5K_REG_MS(_val, _flags)
Definition: ath5k.h:88
#define AR5K_PHY_IQ
Definition: reg.h:2190
static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Definition: ath5k_phy.c:214
#define AR5K_PHY_TPC_RG1_PDGAIN_3
Definition: reg.h:2570
u32 rfb_mode_data[5]
Definition: rfbuffer.h:54
#define AR5K_BEACON_5210
Definition: reg.h:1240
#define AR5K_SREV_AR5424
Definition: ath5k.h:298
#define AR5K_SREV_AR2417
Definition: ath5k.h:305
#define AR5K_PHY_NF_ACTIVE
Definition: reg.h:2039
#define AR5K_TPC_CHIRP
Definition: reg.h:1564
#define CHANNEL_A
Definition: ath5k.h:638
static int max(int x, int y)
Definition: ath5k_phy.c:43
#define AR5K_GAIN_CHECK_ADJUST(_g)
Definition: rfgain.h:455
#define AR5K_PHY_TXPOWER_RATE1
Definition: reg.h:2261
static const struct ath5k_gain_opt rfgain_opt_5111
Definition: rfgain.h:476
ath5k_hw_get_isr - Get interrupt status
Definition: ath5k.h:953
const struct ath5k_gain_opt_step go_step[AR5K_GAIN_STEP_COUNT]
Definition: rfgain.h:466
static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition: ath5k_phy.c:1009
static const struct ath5k_ini_rfgain rfgain_2425[]
Definition: rfgain.h:377
#define AR5K_PHY_NF_RVAL(_n)
Definition: reg.h:2040
#define AR5K_PHY_SIG
Definition: reg.h:2009
u16 ee_db[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB]
Definition: eeprom.h:403
#define AR5K_EEPROM_N_PD_GAINS
Definition: eeprom.h:207
#define CHANNEL_CCK
Definition: ath5k.h:630
#define AR5K_TUNE_DEFAULT_TXPOWER
Definition: ath5k.h:192
#define AR5K_EEPROM_POWER_TABLE_SIZE
Definition: eeprom.h:215
static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition: ath5k_phy.c:1177
static const struct ath5k_ini_rfgain rfgain_2316[]
Definition: rfgain.h:238
unsigned long tmp
Definition: linux_pci.h:53
static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Definition: ath5k_phy.c:269
struct ath5k_chan_pcal_info ee_pwr_cal_b[AR5K_EEPROM_N_2GHZ_CHAN_MAX]
Definition: eeprom.h:427
#define ENOMEM
Not enough space.
Definition: errno.h:534
#define AR5K_PHY_AGCCOARSE_LO
Definition: reg.h:2020
static const struct ath5k_rf_reg rf_regs_5413[]
Definition: rfbuffer.h:827
struct ath5k_rfb_field field
Definition: rfbuffer.h:74
#define AR5K_GAIN_DYN_ADJUST_HI_MARGIN
Definition: rfgain.h:447
#define AR5K_PHY_TPC_RG1_PDGAIN_1
Definition: reg.h:2566
#define AR5K_PHY_PCDAC_TXPOWER(_n)
Definition: reg.h:2498
static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, u32 val, u8 reg_id, int set)
Definition: ath5k_phy.c:51
#define AR5K_PHY_AGC
Definition: reg.h:1905
int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition: ath5k_phy.c:1345
#define AR5K_PHY_NF_AVAL(_n)
Definition: reg.h:2041
#define AR5K_PHY_PAPD_PROBE_TX_NEXT
Definition: reg.h:2246
void ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
Definition: ath5k_phy.c:1416
#define AR5K_PHY_AGCCTL
Definition: reg.h:2028
static s16 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, s16 y_left, s16 y_right)
Definition: ath5k_phy.c:1443
#define CHANNEL_G
Definition: ath5k.h:640
struct ath5k_chan_pcal_info ee_pwr_cal_g[AR5K_EEPROM_N_2GHZ_CHAN_MAX]
Definition: eeprom.h:428
#define AR5K_REG_WRITE_BITS(ah, _reg, _flags, _val)
Definition: ath5k.h:96
static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Definition: ath5k_phy.c:320
u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
Definition: ath5k_phy.c:1372
static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition: ath5k_phy.c:961
static const struct ath5k_ini_rfbuffer rfb_2316[]
Definition: rfbuffer.h:737
static void ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, struct ath5k_rate_pcal_info *rate_info, u8 ee_mode)
Definition: ath5k_phy.c:2412
static void ath5k_setup_pcdac_table(struct ath5k_hw *ah)
Definition: ath5k_phy.c:1976
void udelay(unsigned long usecs)
Delay for a fixed number of microseconds.
Definition: timer.c:60
#define CHANNEL_XR
Definition: ath5k.h:636
enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
Definition: ath5k_phy.c:389
s8 gos_param[AR5K_GAIN_CRN_MAX_FIX_BITS]
Definition: rfgain.h:459
#define AR5K_SREV_AR5413
Definition: ath5k.h:299
static userptr_t size_t offset
Offset of the first segment within the content.
Definition: deflate.h:259
FILE_LICENCE(MIT)
#define u8
Definition: igbvf_osdep.h:38
#define AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1
Definition: reg.h:2576
#define AR5K_TPC
Definition: reg.h:1559
#define AR5K_PHY_RFSTG
Definition: reg.h:2149
#define AR5K_RF_BUFFER
Definition: reg.h:2125
uint32_t channel
RNDIS channel.
Definition: netvsc.h:14
ath5k_rfgain
Definition: ath5k.h:602
int ath5k_hw_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition: ath5k_phy.c:1048
#define AR5K_TXPOWER_OFDM(_r, _v)
Definition: ath5k.h:536
static const struct ath5k_ini_rfbuffer rfb_5112[]
Definition: rfbuffer.h:337
#define AR5K_PHY_NF
Definition: reg.h:2037
u8 ee_n_piers[AR5K_EEPROM_N_MODES]
Definition: eeprom.h:425
#define AR5K_PHY_TXPOWER_RATE3
Definition: reg.h:2265
static const struct ath5k_ini_rfgain rfgain_5112[]
Definition: rfgain.h:101
#define AR5K_PHY_TPC_RG5
Definition: reg.h:2573
static int ath5k_setup_channel_powertable(struct ath5k_hw *ah, struct net80211_channel *channel, u8 ee_mode, u8 type)
Definition: ath5k_phy.c:2190
static const struct ath5k_rf_reg rf_regs_2316[]
Definition: rfbuffer.h:731
char * strerror(int errno)
Retrieve string representation of error number.
Definition: strerror.c:78
static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition: ath5k_phy.c:1277
unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
Definition: ath5k_phy.c:1422
union aes_table_entry entry[256]
Table entries, indexed by S(N)
Definition: aes.c:26
static const struct ath5k_ini_rfgain rfgain_2413[]
Definition: rfgain.h:170
u8 go_steps_count
Definition: rfgain.h:465
#define AR5K_RF_BUFFER_CONTROL_5
Definition: reg.h:2139
static void ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, struct net80211_channel *channel, struct ath5k_chan_pcal_info **pcinfo_l, struct ath5k_chan_pcal_info **pcinfo_r)
Definition: ath5k_phy.c:1580
An 802.11 RF channel.
Definition: net80211.h:385
static const struct ath5k_ini_rfbuffer rfb_2425[]
Definition: rfbuffer.h:946
static void ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
Definition: ath5k_phy.c:2005
#define AR5K_EEPROM_N_EDGES
Definition: eeprom.h:189
#define AR5K_DEFAULT_ANTENNA
Definition: reg.h:1476
#define AR5K_PHY_RFSTG_DISABLE
Definition: reg.h:2150
#define AR5K_EEPROM_MODE_11B
Definition: eeprom.h:63
#define AR5K_TPC_CTS
Definition: reg.h:1562
#define ARRAY_SIZE(x)
Definition: efx_common.h:43
int ath5k_hw_phy_disable(struct ath5k_hw *ah)
Definition: ath5k_phy.c:1358
static const struct ath5k_gain_opt rfgain_opt_5112
Definition: rfgain.h:502
#define CHANNEL_OFDM
Definition: ath5k.h:631
static const struct ath5k_rf_reg rf_regs_5111[]
Definition: rfbuffer.h:160
struct ath5k_rate_pcal_info ee_rate_tpwr_b[AR5K_EEPROM_N_2GHZ_CHAN_MAX]
Definition: eeprom.h:433
u16 ee_i_gain[AR5K_EEPROM_N_MODES]
Definition: eeprom.h:411
static void ath5k_hw_reg_write(struct ath5k_hw *ah, u32 val, u16 reg)
Definition: ath5k.h:1222
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
Definition: ath5k_phy.c:158
static u32 ath5k_hw_rf5110_chan2athchan(struct net80211_channel *channel)
Definition: ath5k_phy.c:848
static const struct ath5k_ini_rfbuffer rfb_2413[]
Definition: rfbuffer.h:651
#define AR5K_TUNE_TPC_TXPOWER
Definition: ath5k.h:193
void * malloc(size_t size)
Allocate memory.
Definition: malloc.c:583
u8 rates[0]
Rates data, one rate per byte.
Definition: ieee80211.h:16
#define EAGAIN
Resource temporarily unavailable.
Definition: errno.h:318
static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition: ath5k_phy.c:867
#define AR5K_PHY_ACT_DISABLE
Definition: reg.h:1934
#define AR5K_RF_BUFFER_CONTROL_3
Definition: reg.h:2130
int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
Definition: ath5k_phy.c:452
static void ath5k_get_rate_pcal_data(struct ath5k_hw *ah, struct net80211_channel *channel, struct ath5k_rate_pcal_info *rates)
Definition: ath5k_phy.c:1660
void __asmcall int val
Definition: setjmp.h:28
static s16 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, const s16 *pwrL, const s16 *pwrR)
Definition: ath5k_phy.c:1476
#define AR5K_TUNE_NOISE_FLOOR
Definition: ath5k.h:190
struct ath5k_rate_pcal_info ee_rate_tpwr_a[AR5K_EEPROM_N_5GHZ_CHAN]
Definition: eeprom.h:432
void mdelay(unsigned long msecs)
Delay for a fixed number of milliseconds.
Definition: timer.c:78
static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
Definition: ath5k_phy.c:194
#define AR5K_REG_DISABLE_BITS(ah, _reg, _flags)
Definition: ath5k.h:107
#define AR5K_GAIN_DYN_ADJUST_LO_MARGIN
Definition: rfgain.h:448
u16 ee_xpd[AR5K_EEPROM_N_MODES]
Definition: eeprom.h:409
#define AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
Definition: reg.h:2574
#define CHANNEL_T
Definition: ath5k.h:641
#define AR5K_PHY_IQ_CAL_NUM_LOG_MAX
Definition: reg.h:2195
u32 data2
Definition: ar9003_mac.h:73
struct ath5k_chan_pcal_info ee_pwr_cal_a[AR5K_EEPROM_N_5GHZ_CHAN]
Definition: eeprom.h:426
uint32_t type
Operating system type.
Definition: ena.h:12
static const struct ath5k_ini_rfbuffer rfb_5112a[]
Definition: rfbuffer.h:517
#define AR5K_SREV_RAD_5112A
Definition: ath5k.h:312
#define AR5K_PHY_IQ_CORR_Q_I_COFF_S
Definition: reg.h:2193
#define AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3
Definition: reg.h:2580
#define AR5K_PHY(_n)
Definition: reg.h:1861
#define AR5K_DIAG_SW_5210
Definition: reg.h:1390
#define AR5K_INI_RFGAIN_2GHZ
Definition: ath5k.h:140
#define CHANNEL_5GHZ
Definition: ath5k.h:633
static const struct ath5k_ini_rfgain rfgain_5111[]
Definition: rfgain.h:32
void step(void)
Single-step a single process.
Definition: process.c:98
struct ath5k_rate_pcal_info ee_rate_tpwr_g[AR5K_EEPROM_N_2GHZ_CHAN_MAX]
Definition: eeprom.h:434
#define AR5K_PHY_IQRES_CAL_PWR_I
Definition: reg.h:2416
uint8_t size
Entry size (in 32-bit words)
Definition: ena.h:16
uint8_t data[48]
Additional event data.
Definition: ena.h:22
int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
Definition: ath5k_phy.c:830
#define AR5K_TPC_ACK
Definition: reg.h:1560
int ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
Definition: ath5k_phy.c:1127
#define CHANNEL_MODES
Definition: ath5k.h:651
uint8_t ah
Definition: registers.h:85
#define AR5K_PHY_TPC_RG1
Definition: reg.h:2563
u32 rfg_value[2]
Definition: rfgain.h:28
#define AR5K_PHY_CCKTXCTL_WORLD
Definition: reg.h:2522
#define AR5K_SREV_PHY_5212A
Definition: ath5k.h:327
#define AR5K_PHY_TXPOWER_RATE4
Definition: reg.h:2266
static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition: ath5k_phy.c:915
int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
Definition: ath5k_phy.c:2572
u16 ee_ob[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB]
Definition: eeprom.h:402
static u32 ath5k_hw_reg_read(struct ath5k_hw *ah, u16 reg)
Definition: ath5k.h:1214
#define AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2
Definition: reg.h:2578
static const struct ath5k_ini_rfbuffer rfb_2317[]
Definition: rfbuffer.h:1026
struct ath5k_edge_power ee_ctl_pwr[AR5K_EEPROM_N_EDGES *AR5K_EEPROM_MAX_CTLS]
Definition: eeprom.h:439
uint64_t index
Index of the first segment within the content.
Definition: pccrc.h:21
u32 data0
Definition: ar9003_mac.h:69
#define AR5K_DIAG_SW_DIS_TX
Definition: reg.h:1399
#define DBG(...)
Print a debugging message.
Definition: compiler.h:498
#define CHANNEL_B
Definition: ath5k.h:639
#define CHANNEL_2GHZ
Definition: ath5k.h:632
#define AR5K_PHY_TPC_RG1_NUM_PD_GAIN
Definition: reg.h:2564
#define AR5K_PHY_ADCSAT_THR
Definition: reg.h:2054
#define AR5K_PHY_AGCCOARSE_HI
Definition: reg.h:2022
static const struct ath5k_ini_rfgain rfgain_5413[]
Definition: rfgain.h:307
#define AR5K_PHY_FRAME_CTL_TX_CLIP
Definition: reg.h:2276
static void ath5k_get_max_ctl_power(struct ath5k_hw *ah, struct net80211_channel *channel)
Definition: ath5k_phy.c:1748
u16 ee_cck_ofdm_gain_delta
Definition: eeprom.h:389
#define AR5K_PHY_PDADC_TXPOWER(_n)
Definition: reg.h:2589
#define AR5K_PHY_ADCSAT_ICNT
Definition: reg.h:2052
#define AR5K_PHY_CCKTXCTL
Definition: reg.h:2521
#define AR5K_PHY_IQ_RUN
Definition: reg.h:2197
#define AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE
Definition: reg.h:2264
#define NULL
NULL pointer (VOID *)
Definition: Base.h:321
int ath5k_hw_txpower(struct ath5k_hw *ah, struct net80211_channel *channel, u8 ee_mode, u8 txpower)
Definition: ath5k_phy.c:2474
#define CHANNEL_TG
Definition: ath5k.h:642
#define AR5K_PHY_IQRES_CAL_PWR_Q
Definition: reg.h:2417
#define AR5K_PHY_TXPOWER_RATE2
Definition: reg.h:2262
struct bofm_section_header done
Definition: bofm_test.c:46
uint8_t u8
Definition: stdint.h:19
uint32_t u32
Definition: stdint.h:23
#define AR5K_CTL_NO_REGDOMAIN
Definition: eeprom.h:269
#define AR5K_PHY_ACT_ENABLE
Definition: reg.h:1933
#define DBG2(...)
Definition: compiler.h:515
static const struct ath5k_ini_rfbuffer rfb_5111[]
Definition: rfbuffer.h:179
static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, struct ath5k_athchan_2ghz *athchan)
Definition: ath5k_phy.c:886
#define AR5K_TUNE_MAX_TXPOWER
Definition: ath5k.h:191
#define AR5K_REG_ENABLE_BITS(ah, _reg, _flags)
Definition: ath5k.h:104
void * memset(void *dest, int character, size_t len) __nonnull
#define AR5K_PHY_ACT
Definition: reg.h:1932
#define AR5K_PHY_CCKTXCTL_JAPAN
Definition: reg.h:2523
#define AR5K_RF_BUFFER_CONTROL_0
Definition: reg.h:2126
#define AR5K_DIAG_SW_DIS_RX_5210
Definition: reg.h:1400
#define AR5K_REG_SM(_val, _flags)
Definition: ath5k.h:84
uint8_t flags
Flags.
Definition: ena.h:18