iPXE
Defines | Functions | Variables
ath9k_eeprom_def.c File Reference
#include <ipxe/io.h>
#include "hw.h"
#include "ar9002_phy.h"

Go to the source code of this file.

Defines

#define SIZE_EEPROM_DEF   (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
#define XPA_LVL_FREQ(cnt)   (pModal->xpaBiasLvlFreq[cnt])
#define NUM_PDADC(diff)   (AR5416_NUM_PDADC_VALUES - diff)
#define SM_PD_GAIN(x)   SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
#define SM_PDGAIN_B(x, y)   SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN   6 /* 10*log10(2)*2 */
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9 /* 10*log10(3)*2 */
#define RT_AR_DELTA(x)   (ratesArray[x] - cck_ofdm_delta)
#define EEP_DEF_SPURCHAN   (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)

Functions

static void ath9k_get_txgain_index (struct ath_hw *ah, struct ath9k_channel *chan, struct calDataPerFreqOpLoop *rawDatasetOpLoop, u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
static void ath9k_olc_get_pdadcs (struct ath_hw *ah, u32 initTxGain, int txPower, u8 *pPDADCValues)
static int ath9k_hw_def_get_eeprom_ver (struct ath_hw *ah)
static int ath9k_hw_def_get_eeprom_rev (struct ath_hw *ah)
static int __ath9k_hw_def_fill_eeprom (struct ath_hw *ah)
static int __ath9k_hw_usb_def_fill_eeprom (struct ath_hw *ah)
static int ath9k_hw_def_fill_eeprom (struct ath_hw *ah)
static int ath9k_hw_def_check_eeprom (struct ath_hw *ah)
static u32 ath9k_hw_def_get_eeprom (struct ath_hw *ah, enum eeprom_param param)
static void ath9k_hw_def_set_gain (struct ath_hw *ah, struct modal_eep_header *pModal, struct ar5416_eeprom_def *eep, u8 txRxAttenLocal, int regChainOffset, int i)
static void ath9k_hw_def_set_board_values (struct ath_hw *ah, struct ath9k_channel *chan)
static void ath9k_hw_def_set_addac (struct ath_hw *ah, struct ath9k_channel *chan)
static int16_t ath9k_change_gain_boundary_setting (struct ath_hw *ah, u16 *gb, u16 numXpdGain, u16 pdGainOverlap_t2, int8_t pwr_table_offset, int16_t *diff)
static void ath9k_adjust_pdadc_values (struct ath_hw *ah, int8_t pwr_table_offset, int16_t diff, u8 *pdadcValues)
static void ath9k_hw_set_def_power_cal_table (struct ath_hw *ah, struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset)
static void ath9k_hw_set_def_power_per_rate_table (struct ath_hw *ah, struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl, u16 AntennaReduction, u16 twiceMaxRegulatoryPower, u16 powerLimit)
static void ath9k_hw_def_set_txpower (struct ath_hw *ah, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit, int test)
static u16 ath9k_hw_def_get_spur_channel (struct ath_hw *ah, u16 i, int is2GHz)

Variables

struct eeprom_ops eep_def_ops

Define Documentation

#define SIZE_EEPROM_DEF   (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
#define XPA_LVL_FREQ (   cnt)    (pModal->xpaBiasLvlFreq[cnt])

Referenced by ath9k_hw_def_set_addac().

#define NUM_PDADC (   diff)    (AR5416_NUM_PDADC_VALUES - diff)
#define SM_PD_GAIN (   x)    SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
#define SM_PDGAIN_B (   x,
 
)    SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN   6 /* 10*log10(2)*2 */
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9 /* 10*log10(3)*2 */
#define RT_AR_DELTA (   x)    (ratesArray[x] - cck_ofdm_delta)
#define EEP_DEF_SPURCHAN   (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)

Function Documentation

static void ath9k_get_txgain_index ( struct ath_hw ah,
struct ath9k_channel chan,
struct calDataPerFreqOpLoop rawDatasetOpLoop,
u8 calChans,
u16  availPiers,
u8 pwr,
u8 pcdacIdx 
) [static]

Definition at line 25 of file ath9k_eeprom_def.c.

References AR5416_BCHAN_UNUSED, AR9280_TX_GAIN_TABLE_SIZE, ath9k_hw_get_channel_centers(), ath9k_hw_get_lower_upper_index(), FREQ2FBIN, IS_CHAN_2GHZ, ath_hw::originalGain, calDataPerFreqOpLoop::pcdac, calDataPerFreqOpLoop::pwrPdg, and chan_centers::synth_center.

Referenced by ath9k_hw_set_def_power_cal_table().

{
        u8 pcdac, i = 0;
        u16 idxL = 0, idxR = 0, numPiers;
        int match;
        struct chan_centers centers;

        ath9k_hw_get_channel_centers(ah, chan, &centers);

        for (numPiers = 0; numPiers < availPiers; numPiers++)
                if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
                        break;

        match = ath9k_hw_get_lower_upper_index(
                        (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
                        calChans, numPiers, &idxL, &idxR);
        if (match) {
                pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
                *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
        } else {
                pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
                *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
                                rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
        }

        while (pcdac > ah->originalGain[i] &&
                        i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
                i++;

        *pcdacIdx = i;
}
static void ath9k_olc_get_pdadcs ( struct ath_hw ah,
u32  initTxGain,
int  txPower,
u8 pPDADCValues 
) [static]
static int ath9k_hw_def_get_eeprom_ver ( struct ath_hw ah) [static]

Definition at line 84 of file ath9k_eeprom_def.c.

References ar5416_eeprom_def::baseEepHeader, ath_hw::def, ath_hw::eeprom, and base_eep_header::version.

{
        return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
}
static int ath9k_hw_def_get_eeprom_rev ( struct ath_hw ah) [static]
static int __ath9k_hw_def_fill_eeprom ( struct ath_hw ah) [static]

Definition at line 96 of file ath9k_eeprom_def.c.

References addr, ath9k_hw_common(), ath9k_hw_nvram_read(), common, DBG, ath_hw::def, ath_hw::eeprom, and SIZE_EEPROM_DEF.

Referenced by ath9k_hw_def_fill_eeprom().

{
        struct ath_common *common = ath9k_hw_common(ah);
        u16 *eep_data = (u16 *)&ah->eeprom.def;
        unsigned int addr;
        int ar5416_eep_start_loc = 0x100;

        for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
                if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
                                         eep_data)) {
                        DBG("ath9k: "
                                "Unable to read eeprom region\n");
                        return 0;
                }
                eep_data++;
        }
        return 1;
}
static int __ath9k_hw_usb_def_fill_eeprom ( struct ath_hw ah) [static]

Definition at line 115 of file ath9k_eeprom_def.c.

References ath9k_hw_usb_gen_fill_eeprom(), ath_hw::def, ath_hw::eeprom, and SIZE_EEPROM_DEF.

Referenced by ath9k_hw_def_fill_eeprom().

{
        u16 *eep_data = (u16 *)&ah->eeprom.def;

        ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
                                     0x100, SIZE_EEPROM_DEF);
        return 1;
}
static int ath9k_hw_def_fill_eeprom ( struct ath_hw ah) [static]
static int ath9k_hw_def_check_eeprom ( struct ath_hw ah) [static]

Definition at line 141 of file ath9k_eeprom_def.c.

References addr, modal_eep_header::antCtrlChain, modal_eep_header::antCtrlCommon, AR5416_EEP_NO_BACK_VER, AR5416_EEP_VER, AR5416_EEPROM_MAGIC, AR5416_EEPROM_MAGIC_OFFSET, AR5416_MAX_CHAINS, AR9280_DEVID_PCI, AR_EEPROM_MODAL_SPURS, AR_SREV_9280, ARRAY_SIZE, ath9k_hw_common(), ath9k_hw_nvram_read(), ath9k_hw_use_flash, ATH_USB, ar5416_eeprom_def::baseEepHeader, base_eep_header::blueToothOptions, base_eep_header::checksum, common, DBG, DBG2, ath_hw::def, base_eep_header::deviceCap, ath9k_hw_version::devid, ath_hw::eep_ops, ath_hw::eeprom, EINVAL, eeprom_ops::get_eeprom_rev, eeprom_ops::get_eeprom_ver, ath_hw::hw_version, base_eep_header::length, magic, ar5416_eeprom_def::modalHeader, ath_hw::need_an_top2_fixup, base_eep_header::pwdclkind, base_eep_header::regDmn, base_eep_header::rfSilent, size, spur_chan::spurChan, modal_eep_header::spurChans, swab16, swab32, u16, base_eep_header::version, modal_eep_header::xpaBiasLvl, and modal_eep_header::xpaBiasLvlFreq.

{
        struct ar5416_eeprom_def *eep =
                (struct ar5416_eeprom_def *) &ah->eeprom.def;
        struct ath_common *common = ath9k_hw_common(ah);
        u16 *eepdata, temp, magic, magic2;
        u32 sum = 0, el;
        int need_swap = 0;
        unsigned int i, addr, size;

        if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
                DBG("ath9k: Reading Magic # failed\n");
                return 0;
        }

        if (!ath9k_hw_use_flash(ah)) {
                DBG2("ath9k: "
                        "Read Magic = 0x%04X\n", magic);

                if (magic != AR5416_EEPROM_MAGIC) {
                        magic2 = swab16(magic);

                        if (magic2 == AR5416_EEPROM_MAGIC) {
                                size = sizeof(struct ar5416_eeprom_def);
                                need_swap = 1;
                                eepdata = (u16 *) (&ah->eeprom);

                                for (addr = 0; addr < size / sizeof(u16); addr++) {
                                        temp = swab16(*eepdata);
                                        *eepdata = temp;
                                        eepdata++;
                                }
                        } else {
                                DBG("ath9k: "
                                        "Invalid EEPROM Magic. Endianness mismatch.\n");
                                return -EINVAL;
                        }
                }
        }

        DBG2("ath9k: need_swap = %s.\n",
                need_swap ? "True" : "False");

        if (need_swap)
                el = swab16(ah->eeprom.def.baseEepHeader.length);
        else
                el = ah->eeprom.def.baseEepHeader.length;

        if (el > sizeof(struct ar5416_eeprom_def))
                el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
        else
                el = el / sizeof(u16);

        eepdata = (u16 *)(&ah->eeprom);

        for (i = 0; i < el; i++)
                sum ^= *eepdata++;

        if (need_swap) {
                u32 integer, j;
                u16 word;

                DBG("ath9k: "
                        "EEPROM Endianness is not native.. Changing.\n");

                word = swab16(eep->baseEepHeader.length);
                eep->baseEepHeader.length = word;

                word = swab16(eep->baseEepHeader.checksum);
                eep->baseEepHeader.checksum = word;

                word = swab16(eep->baseEepHeader.version);
                eep->baseEepHeader.version = word;

                word = swab16(eep->baseEepHeader.regDmn[0]);
                eep->baseEepHeader.regDmn[0] = word;

                word = swab16(eep->baseEepHeader.regDmn[1]);
                eep->baseEepHeader.regDmn[1] = word;

                word = swab16(eep->baseEepHeader.rfSilent);
                eep->baseEepHeader.rfSilent = word;

                word = swab16(eep->baseEepHeader.blueToothOptions);
                eep->baseEepHeader.blueToothOptions = word;

                word = swab16(eep->baseEepHeader.deviceCap);
                eep->baseEepHeader.deviceCap = word;

                for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
                        struct modal_eep_header *pModal =
                                &eep->modalHeader[j];
                        integer = swab32(pModal->antCtrlCommon);
                        pModal->antCtrlCommon = integer;

                        for (i = 0; i < AR5416_MAX_CHAINS; i++) {
                                integer = swab32(pModal->antCtrlChain[i]);
                                pModal->antCtrlChain[i] = integer;
                        }
                        for (i = 0; i < 3; i++) {
                                word = swab16(pModal->xpaBiasLvlFreq[i]);
                                pModal->xpaBiasLvlFreq[i] = word;
                        }

                        for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
                                word = swab16(pModal->spurChans[i].spurChan);
                                pModal->spurChans[i].spurChan = word;
                        }
                }
        }

        if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
            ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
                DBG("ath9k: Bad EEPROM checksum 0x%x or revision 0x%04x\n",
                        sum, ah->eep_ops->get_eeprom_ver(ah));
                return -EINVAL;
        }

        /* Enable fixup for AR_AN_TOP2 if necessary */
        if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
            ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
            (eep->baseEepHeader.pwdclkind == 0))
                ah->need_an_top2_fixup = 1;

        if ((common->bus_ops->ath_bus_type == ATH_USB) &&
            (AR_SREV_9280(ah)))
                eep->modalHeader[0].xpaBiasLvl = 0;

        return 0;
}
static u32 ath9k_hw_def_get_eeprom ( struct ath_hw ah,
enum eeprom_param  param 
) [static]

Definition at line 272 of file ath9k_eeprom_def.c.

References AR5416_EEP_MINOR_VER_19, AR5416_EEP_MINOR_VER_20, AR5416_EEP_MINOR_VER_21, AR5416_EEP_MINOR_VER_22, AR5416_PWR_TABLE_OFFSET_DB, AR5416_VER_MASK, ar5416_eeprom_def::baseEepHeader, base_eep_header::dacHiPwrMode_5G, modal_eep_header::db, ath_hw::def, base_eep_header::deviceCap, EEP_DAC_HPWR_5G, EEP_DB_2, EEP_DB_5, EEP_FRAC_N_5G, EEP_FSTCLK_5G, EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW, EEP_MINOR_REV, EEP_NFTHRESH_2, EEP_NFTHRESH_5, EEP_OB_2, EEP_OB_5, EEP_OL_PWRCTRL, EEP_OP_CAP, EEP_OP_MODE, EEP_PWR_TABLE_OFFSET, EEP_RC_CHAIN_MASK, EEP_REG_0, EEP_REG_1, EEP_RF_SILENT, EEP_RX_MASK, EEP_RXGAIN_TYPE, EEP_TX_MASK, EEP_TXGAIN_TYPE, ath_hw::eeprom, base_eep_header::fastClk5g, base_eep_header::frac_n_5g, base_eep_header::macAddr, ar5416_eeprom_def::modalHeader, modal_eep_header::noiseFloorThreshCh, modal_eep_header::ob, base_eep_header::opCapFlags, base_eep_header::openLoopPwrCntl, base_eep_header::pwr_table_offset, base_eep_header::rcChainMask, base_eep_header::regDmn, base_eep_header::rfSilent, base_eep_header::rxGainType, base_eep_header::rxMask, base_eep_header::txGainType, and base_eep_header::txMask.

{
        struct ar5416_eeprom_def *eep = &ah->eeprom.def;
        struct modal_eep_header *pModal = eep->modalHeader;
        struct base_eep_header *pBase = &eep->baseEepHeader;

        switch (param) {
        case EEP_NFTHRESH_5:
                return pModal[0].noiseFloorThreshCh[0];
        case EEP_NFTHRESH_2:
                return pModal[1].noiseFloorThreshCh[0];
        case EEP_MAC_LSW:
                return pBase->macAddr[0] << 8 | pBase->macAddr[1];
        case EEP_MAC_MID:
                return pBase->macAddr[2] << 8 | pBase->macAddr[3];
        case EEP_MAC_MSW:
                return pBase->macAddr[4] << 8 | pBase->macAddr[5];
        case EEP_REG_0:
                return pBase->regDmn[0];
        case EEP_REG_1:
                return pBase->regDmn[1];
        case EEP_OP_CAP:
                return pBase->deviceCap;
        case EEP_OP_MODE:
                return pBase->opCapFlags;
        case EEP_RF_SILENT:
                return pBase->rfSilent;
        case EEP_OB_5:
                return pModal[0].ob;
        case EEP_DB_5:
                return pModal[0].db;
        case EEP_OB_2:
                return pModal[1].ob;
        case EEP_DB_2:
                return pModal[1].db;
        case EEP_MINOR_REV:
                return AR5416_VER_MASK;
        case EEP_TX_MASK:
                return pBase->txMask;
        case EEP_RX_MASK:
                return pBase->rxMask;
        case EEP_FSTCLK_5G:
                return pBase->fastClk5g;
        case EEP_RXGAIN_TYPE:
                return pBase->rxGainType;
        case EEP_TXGAIN_TYPE:
                return pBase->txGainType;
        case EEP_OL_PWRCTRL:
                if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
                        return pBase->openLoopPwrCntl ? 1 : 0;
                else
                        return 0;
        case EEP_RC_CHAIN_MASK:
                if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
                        return pBase->rcChainMask;
                else
                        return 0;
        case EEP_DAC_HPWR_5G:
                if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
                        return pBase->dacHiPwrMode_5G;
                else
                        return 0;
        case EEP_FRAC_N_5G:
                if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
                        return pBase->frac_n_5g;
                else
                        return 0;
        case EEP_PWR_TABLE_OFFSET:
                if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
                        return pBase->pwr_table_offset;
                else
                        return AR5416_PWR_TABLE_OFFSET_DB;
        default:
                return 0;
        }
}
static void ath9k_hw_def_set_gain ( struct ath_hw ah,
struct modal_eep_header pModal,
struct ar5416_eeprom_def eep,
u8  txRxAttenLocal,
int  regChainOffset,
int  i 
) [static]

Definition at line 350 of file ath9k_eeprom_def.c.

References AR5416_EEP_MINOR_VER_3, AR5416_VER_MASK, AR9280_PHY_RXGAIN_TXRX_ATTEN, AR9280_PHY_RXGAIN_TXRX_MARGIN, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, AR_PHY_GAIN_2GHZ_BSW_MARGIN, AR_PHY_GAIN_2GHZ_RXTX_MARGIN, AR_PHY_GAIN_2GHZ_XATTEN1_DB, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, AR_PHY_GAIN_2GHZ_XATTEN2_DB, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, AR_PHY_RXGAIN, AR_PHY_RXGAIN_TXRX_ATTEN, AR_SREV_9280_20_OR_LATER, modal_eep_header::bswAtten, modal_eep_header::bswMargin, REG_READ, REG_RMW_FIELD, REG_WRITE, modal_eep_header::rxTxMarginCh, SM, modal_eep_header::txRxAttenCh, modal_eep_header::xatten2Db, and modal_eep_header::xatten2Margin.

Referenced by ath9k_hw_def_set_board_values().

{
        if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
                txRxAttenLocal = pModal->txRxAttenCh[i];

                if (AR_SREV_9280_20_OR_LATER(ah)) {
                        REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
                              AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
                              pModal->bswMargin[i]);
                        REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
                              AR_PHY_GAIN_2GHZ_XATTEN1_DB,
                              pModal->bswAtten[i]);
                        REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
                              AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
                              pModal->xatten2Margin[i]);
                        REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
                              AR_PHY_GAIN_2GHZ_XATTEN2_DB,
                              pModal->xatten2Db[i]);
                } else {
                        REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
                          (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
                           ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
                          | SM(pModal-> bswMargin[i],
                               AR_PHY_GAIN_2GHZ_BSW_MARGIN));
                        REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
                          (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
                           ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
                          | SM(pModal->bswAtten[i],
                               AR_PHY_GAIN_2GHZ_BSW_ATTEN));
                }
        }

        if (AR_SREV_9280_20_OR_LATER(ah)) {
                REG_RMW_FIELD(ah,
                      AR_PHY_RXGAIN + regChainOffset,
                      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
                REG_RMW_FIELD(ah,
                      AR_PHY_RXGAIN + regChainOffset,
                      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
        } else {
                REG_WRITE(ah,
                          AR_PHY_RXGAIN + regChainOffset,
                          (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
                           ~AR_PHY_RXGAIN_TXRX_ATTEN)
                          | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
                REG_WRITE(ah,
                          AR_PHY_GAIN_2GHZ + regChainOffset,
                          (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
                           ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
                          SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
        }
}
static void ath9k_hw_def_set_board_values ( struct ath_hw ah,
struct ath9k_channel chan 
) [static]

Definition at line 406 of file ath9k_eeprom_def.c.

References modal_eep_header::adcDesiredSize, modal_eep_header::antCtrlChain, modal_eep_header::antCtrlCommon, AR5416_EEP_MINOR_VER_19, AR5416_EEP_MINOR_VER_2, AR5416_EEP_MINOR_VER_20, AR5416_EEP_MINOR_VER_3, AR5416_MAX_CHAINS, AR5416_VER_MASK, AR9280_PHY_CCA_THRESH62, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, AR_AN_RF2G1_CH0_DB_S, AR_AN_RF2G1_CH0_OB, AR_AN_RF2G1_CH0_OB_S, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, AR_AN_RF2G1_CH1_DB_S, AR_AN_RF2G1_CH1_OB, AR_AN_RF2G1_CH1_OB_S, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, AR_AN_RF5G1_CH0_DB5_S, AR_AN_RF5G1_CH0_OB5, AR_AN_RF5G1_CH0_OB5_S, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, AR_AN_RF5G1_CH1_DB5_S, AR_AN_RF5G1_CH1_OB5, AR_AN_RF5G1_CH1_OB5_S, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, AR_AN_TOP2_LOCALBIAS_S, AR_AN_TOP2_XPABIAS_LVL, AR_AN_TOP2_XPABIAS_LVL_S, AR_PHY_CCA, AR_PHY_CCA_THRESH62, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, AR_PHY_DESIRED_SZ_PGA, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, AR_PHY_EXT_CCA_THRESH62, AR_PHY_FORCE_XPA_CFG, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, AR_PHY_RF_CTL2, AR_PHY_RF_CTL3, AR_PHY_RF_CTL4, AR_PHY_RF_CTL4_FRAME_XPAA_ON, AR_PHY_RF_CTL4_FRAME_XPAB_ON, AR_PHY_RF_CTL4_TX_END_XPAA_OFF, AR_PHY_RF_CTL4_TX_END_XPAB_OFF, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, AR_PHY_SWITCH_CHAIN_0, AR_PHY_SWITCH_COM, AR_PHY_TIMING_CTRL4, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, AR_PHY_TX_DESIRED_SCALE_CCK, AR_PHY_TX_END_DATA_START, AR_PHY_TX_END_PA_ON, AR_PHY_TX_END_TO_A2_RX_ON, AR_PHY_TX_PWRCTRL9, AR_PHY_XPA_CFG, AR_SREV_5416_20_OR_LATER, AR_SREV_9280, AR_SREV_9280_20, AR_SREV_9280_20_OR_LATER, ath9k_hw_analog_shift_rmw(), ath9k_hw_def_set_gain(), ar5416_eeprom_def::baseEepHeader, base_eep_header::dacHiPwrMode_5G, base_eep_header::dacLpMode, modal_eep_header::db, modal_eep_header::db_ch1, ath_hw::def, base_eep_header::desiredScaleCCK, ath_hw::eeprom, modal_eep_header::iqCalICh, modal_eep_header::iqCalQCh, IS_CHAN_2GHZ, IS_CHAN_HT40, modal_eep_header::lna_ctl, LNA_CTL_FORCE_XPA, LNA_CTL_LOCAL_BIAS, modal_eep_header::miscBits, ar5416_eeprom_def::modalHeader, modal_eep_header::ob, modal_eep_header::ob_ch1, modal_eep_header::pgaDesiredSize, REG_READ, REG_RMW_FIELD, REG_WRITE, ath_hw::rxchainmask, SM, modal_eep_header::switchSettling, modal_eep_header::swSettleHt40, modal_eep_header::thresh62, ath_hw::txchainmask, modal_eep_header::txEndToRxOn, modal_eep_header::txEndToXpaOff, modal_eep_header::txFrameToDataStart, modal_eep_header::txFrameToPaOn, modal_eep_header::txFrameToXpaOn, udelay(), and modal_eep_header::xpaBiasLvl.

{
        struct modal_eep_header *pModal;
        struct ar5416_eeprom_def *eep = &ah->eeprom.def;
        int i, regChainOffset;
        u8 txRxAttenLocal;

        pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
        txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;

        REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);

        for (i = 0; i < AR5416_MAX_CHAINS; i++) {
                if (AR_SREV_9280(ah)) {
                        if (i >= 2)
                                break;
                }

                if (AR_SREV_5416_20_OR_LATER(ah) &&
                    (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
                        regChainOffset = (i == 1) ? 0x2000 : 0x1000;
                else
                        regChainOffset = i * 0x1000;

                REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
                          pModal->antCtrlChain[i]);

                REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
                          (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
                           ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
                             AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
                          SM(pModal->iqCalICh[i],
                             AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
                          SM(pModal->iqCalQCh[i],
                             AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));

                if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
                        ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
                                              regChainOffset, i);
        }

        if (AR_SREV_9280_20_OR_LATER(ah)) {
                if (IS_CHAN_2GHZ(chan)) {
                        ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
                                                  AR_AN_RF2G1_CH0_OB,
                                                  AR_AN_RF2G1_CH0_OB_S,
                                                  pModal->ob);
                        ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
                                                  AR_AN_RF2G1_CH0_DB,
                                                  AR_AN_RF2G1_CH0_DB_S,
                                                  pModal->db);
                        ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
                                                  AR_AN_RF2G1_CH1_OB,
                                                  AR_AN_RF2G1_CH1_OB_S,
                                                  pModal->ob_ch1);
                        ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
                                                  AR_AN_RF2G1_CH1_DB,
                                                  AR_AN_RF2G1_CH1_DB_S,
                                                  pModal->db_ch1);
                } else {
                        ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
                                                  AR_AN_RF5G1_CH0_OB5,
                                                  AR_AN_RF5G1_CH0_OB5_S,
                                                  pModal->ob);
                        ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
                                                  AR_AN_RF5G1_CH0_DB5,
                                                  AR_AN_RF5G1_CH0_DB5_S,
                                                  pModal->db);
                        ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
                                                  AR_AN_RF5G1_CH1_OB5,
                                                  AR_AN_RF5G1_CH1_OB5_S,
                                                  pModal->ob_ch1);
                        ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
                                                  AR_AN_RF5G1_CH1_DB5,
                                                  AR_AN_RF5G1_CH1_DB5_S,
                                                  pModal->db_ch1);
                }
                ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
                                          AR_AN_TOP2_XPABIAS_LVL,
                                          AR_AN_TOP2_XPABIAS_LVL_S,
                                          pModal->xpaBiasLvl);
                ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
                                          AR_AN_TOP2_LOCALBIAS,
                                          AR_AN_TOP2_LOCALBIAS_S,
                                          !!(pModal->lna_ctl &
                                             LNA_CTL_LOCAL_BIAS));
                REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
                              !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
        }

        REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
                      pModal->switchSettling);
        REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
                      pModal->adcDesiredSize);

        if (!AR_SREV_9280_20_OR_LATER(ah))
                REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
                              AR_PHY_DESIRED_SZ_PGA,
                              pModal->pgaDesiredSize);

        REG_WRITE(ah, AR_PHY_RF_CTL4,
                  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
                  | SM(pModal->txEndToXpaOff,
                       AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
                  | SM(pModal->txFrameToXpaOn,
                       AR_PHY_RF_CTL4_FRAME_XPAA_ON)
                  | SM(pModal->txFrameToXpaOn,
                       AR_PHY_RF_CTL4_FRAME_XPAB_ON));

        REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
                      pModal->txEndToRxOn);

        if (AR_SREV_9280_20_OR_LATER(ah)) {
                REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
                              pModal->thresh62);
                REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
                              AR_PHY_EXT_CCA0_THRESH62,
                              pModal->thresh62);
        } else {
                REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
                              pModal->thresh62);
                REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
                              AR_PHY_EXT_CCA_THRESH62,
                              pModal->thresh62);
        }

        if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
                REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
                              AR_PHY_TX_END_DATA_START,
                              pModal->txFrameToDataStart);
                REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
                              pModal->txFrameToPaOn);
        }

        if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
                if (IS_CHAN_HT40(chan))
                        REG_RMW_FIELD(ah, AR_PHY_SETTLING,
                                      AR_PHY_SETTLING_SWITCH,
                                      pModal->swSettleHt40);
        }

        if (AR_SREV_9280_20_OR_LATER(ah) &&
            AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
                REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
                              AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
                              pModal->miscBits);


        if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
                if (IS_CHAN_2GHZ(chan))
                        REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
                                        eep->baseEepHeader.dacLpMode);
                else if (eep->baseEepHeader.dacHiPwrMode_5G)
                        REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
                else
                        REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
                                      eep->baseEepHeader.dacLpMode);

                udelay(100);

                REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
                              pModal->miscBits >> 2);

                REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
                              AR_PHY_TX_DESIRED_SCALE_CCK,
                              eep->baseEepHeader.desiredScaleCCK);
        }
}
static void ath9k_hw_def_set_addac ( struct ath_hw ah,
struct ath9k_channel chan 
) [static]

Definition at line 576 of file ath9k_eeprom_def.c.

References AR5416_EEP_MINOR_VER_7, AR_SREV_VERSION_9160, ath9k_hw_get_channel_centers(), ath_hw::def, ath_hw::eep_ops, ath_hw::eeprom, FREQ2FBIN, eeprom_ops::get_eeprom_rev, ath_hw::hw_version, INI_RA, ath_hw::iniAddac, IS_CHAN_2GHZ, ath9k_hw_version::macVersion, ar5416_eeprom_def::modalHeader, chan_centers::synth_center, XPA_LVL_FREQ, and modal_eep_header::xpaBiasLvl.

{
#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
        struct modal_eep_header *pModal;
        struct ar5416_eeprom_def *eep = &ah->eeprom.def;
        u8 biaslevel;

        if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
                return;

        if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
                return;

        pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);

        if (pModal->xpaBiasLvl != 0xff) {
                biaslevel = pModal->xpaBiasLvl;
        } else {
                u16 resetFreqBin, freqBin, freqCount = 0;
                struct chan_centers centers;

                ath9k_hw_get_channel_centers(ah, chan, &centers);

                resetFreqBin = FREQ2FBIN(centers.synth_center,
                                         IS_CHAN_2GHZ(chan));
                freqBin = XPA_LVL_FREQ(0) & 0xff;
                biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);

                freqCount++;

                while (freqCount < 3) {
                        if (XPA_LVL_FREQ(freqCount) == 0x0)
                                break;

                        freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
                        if (resetFreqBin >= freqBin)
                                biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
                        else
                                break;
                        freqCount++;
                }
        }

        if (IS_CHAN_2GHZ(chan)) {
                INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
                                        7, 1) & (~0x18)) | biaslevel << 3;
        } else {
                INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
                                        6, 1) & (~0xc0)) | biaslevel << 6;
        }
#undef XPA_LVL_FREQ
}
static int16_t ath9k_change_gain_boundary_setting ( struct ath_hw ah,
u16 gb,
u16  numXpdGain,
u16  pdGainOverlap_t2,
int8_t  pwr_table_offset,
int16_t diff 
) [static]

Definition at line 630 of file ath9k_eeprom_def.c.

References AR5416_PWR_TABLE_OFFSET_DB, AR_SREV_9280_20_OR_LATER, k, MAX_RATE_POWER, min, and u16.

Referenced by ath9k_hw_set_def_power_cal_table().

{
        u16 k;

        /* Prior to writing the boundaries or the pdadc vs. power table
         * into the chip registers the default starting point on the pdadc
         * vs. power table needs to be checked and the curve boundaries
         * adjusted accordingly
         */
        if (AR_SREV_9280_20_OR_LATER(ah)) {
                u16 gb_limit;

                if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
                        /* get the difference in dB */
                        *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
                        /* get the number of half dB steps */
                        *diff *= 2;
                        /* change the original gain boundary settings
                         * by the number of half dB steps
                         */
                        for (k = 0; k < numXpdGain; k++)
                                gb[k] = (u16)(gb[k] - *diff);
                }
                /* Because of a hardware limitation, ensure the gain boundary
                 * is not larger than (63 - overlap)
                 */
                gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);

                for (k = 0; k < numXpdGain; k++)
                        gb[k] = (u16)min(gb_limit, gb[k]);
        }

        return *diff;
}
static void ath9k_adjust_pdadc_values ( struct ath_hw ah,
int8_t  pwr_table_offset,
int16_t  diff,
u8 pdadcValues 
) [static]

Definition at line 671 of file ath9k_eeprom_def.c.

References AR5416_PWR_TABLE_OFFSET_DB, AR_SREV_9280_20_OR_LATER, k, NUM_PDADC, and u16.

Referenced by ath9k_hw_set_def_power_cal_table().

{
#define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
        u16 k;

        /* If this is a board that has a pwrTableOffset that differs from
         * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
         * pdadc vs pwr table needs to be adjusted prior to writing to the
         * chip.
         */
        if (AR_SREV_9280_20_OR_LATER(ah)) {
                if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
                        /* shift the table to start at the new offset */
                        for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
                                pdadcValues[k] = pdadcValues[k + diff];
                        }

                        /* fill the back of the table */
                        for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
                                pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
                        }
                }
        }
#undef NUM_PDADC
}
static void ath9k_hw_set_def_power_cal_table ( struct ath_hw ah,
struct ath9k_channel chan,
int16_t pTxPowerIndexOffset 
) [static]

Definition at line 700 of file ath9k_eeprom_def.c.

References AR5416_EEP_MINOR_VER_2, AR5416_EEP_VER_MINOR_MASK, AR5416_MAX_CHAINS, AR5416_NUM_2G_CAL_PIERS, AR5416_NUM_5G_CAL_PIERS, AR5416_NUM_PD_GAINS, AR5416_NUM_PDADC_VALUES, AR5416_PD_GAINS_IN_MASK, AR_PHY_BASE, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, AR_PHY_TPCRG1_PD_GAIN_1, AR_PHY_TPCRG1_PD_GAIN_2, AR_PHY_TPCRG1_PD_GAIN_3, AR_PHY_TPCRG5, AR_PHY_TPCRG5_PD_GAIN_OVERLAP, AR_SREV_5416_20_OR_LATER, ath9k_adjust_pdadc_values(), ath9k_change_gain_boundary_setting(), ath9k_get_txgain_index(), ath9k_hw_get_gain_boundaries_pdadcs(), ath9k_olc_get_pdadcs(), ar5416_eeprom_def::baseEepHeader, ar5416_eeprom_def::calFreqPier2G, ar5416_eeprom_def::calFreqPier5G, ar5416_eeprom_def::calPierData2G, ar5416_eeprom_def::calPierData5G, DBG2, ath_hw::def, ath_hw::eep_ops, EEP_PWR_TABLE_OFFSET, ath_hw::eeprom, ENABLE_REGWRITE_BUFFER, eeprom_ops::get_eeprom, ath_hw::initPDADC, IS_CHAN_2GHZ, ar5416_eeprom_def::modalHeader, MS, NULL, OLC_FOR_AR9280_20_LATER, modal_eep_header::pdGainOverlap, REG_READ, REG_RMW_FIELD, REG_WRITE, REGWRITE_BUFFER_FLUSH, ath_hw::rxchainmask, SM, SM_PD_GAIN, SM_PDGAIN_B, ath_hw::txchainmask, base_eep_header::txMask, u16, base_eep_header::version, and modal_eep_header::xpdGain.

Referenced by ath9k_hw_def_set_txpower().

{
#define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
#define SM_PDGAIN_B(x, y) \
                SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
        struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
        struct cal_data_per_freq *pRawDataset;
        u8 *pCalBChans = NULL;
        u16 pdGainOverlap_t2;
        static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
        u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
        u16 numPiers, i, j;
        int16_t diff = 0;
        u16 numXpdGain, xpdMask;
        u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
        u32 reg32, regOffset, regChainOffset;
        int16_t modalIdx;
        int8_t pwr_table_offset;

        modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
        xpdMask = pEepData->modalHeader[modalIdx].xpdGain;

        pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);

        if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
            AR5416_EEP_MINOR_VER_2) {
                pdGainOverlap_t2 =
                        pEepData->modalHeader[modalIdx].pdGainOverlap;
        } else {
                pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
                                            AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
        }

        if (IS_CHAN_2GHZ(chan)) {
                pCalBChans = pEepData->calFreqPier2G;
                numPiers = AR5416_NUM_2G_CAL_PIERS;
        } else {
                pCalBChans = pEepData->calFreqPier5G;
                numPiers = AR5416_NUM_5G_CAL_PIERS;
        }

        if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
                pRawDataset = pEepData->calPierData2G[0];
                ah->initPDADC = ((struct calDataPerFreqOpLoop *)
                                 pRawDataset)->vpdPdg[0][0];
        }

        numXpdGain = 0;

        for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
                if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
                        if (numXpdGain >= AR5416_NUM_PD_GAINS)
                                break;
                        xpdGainValues[numXpdGain] =
                                (u16)(AR5416_PD_GAINS_IN_MASK - i);
                        numXpdGain++;
                }
        }

        REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
                      (numXpdGain - 1) & 0x3);
        REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
                      xpdGainValues[0]);
        REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
                      xpdGainValues[1]);
        REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
                      xpdGainValues[2]);

        for (i = 0; i < AR5416_MAX_CHAINS; i++) {
                if (AR_SREV_5416_20_OR_LATER(ah) &&
                    (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
                    (i != 0)) {
                        regChainOffset = (i == 1) ? 0x2000 : 0x1000;
                } else
                        regChainOffset = i * 0x1000;

                if (pEepData->baseEepHeader.txMask & (1 << i)) {
                        if (IS_CHAN_2GHZ(chan))
                                pRawDataset = pEepData->calPierData2G[i];
                        else
                                pRawDataset = pEepData->calPierData5G[i];


                        if (OLC_FOR_AR9280_20_LATER) {
                                u8 pcdacIdx;
                                u8 txPower;

                                ath9k_get_txgain_index(ah, chan,
                                (struct calDataPerFreqOpLoop *)pRawDataset,
                                pCalBChans, numPiers, &txPower, &pcdacIdx);
                                ath9k_olc_get_pdadcs(ah, pcdacIdx,
                                                     txPower/2, pdadcValues);
                        } else {
                                ath9k_hw_get_gain_boundaries_pdadcs(ah,
                                                        chan, pRawDataset,
                                                        pCalBChans, numPiers,
                                                        pdGainOverlap_t2,
                                                        gainBoundaries,
                                                        pdadcValues,
                                                        numXpdGain);
                        }

                        diff = ath9k_change_gain_boundary_setting(ah,
                                                           gainBoundaries,
                                                           numXpdGain,
                                                           pdGainOverlap_t2,
                                                           pwr_table_offset,
                                                           &diff);

                        ENABLE_REGWRITE_BUFFER(ah);

                        if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
                                if (OLC_FOR_AR9280_20_LATER) {
                                        REG_WRITE(ah,
                                                AR_PHY_TPCRG5 + regChainOffset,
                                                SM(0x6,
                                                AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
                                                SM_PD_GAIN(1) | SM_PD_GAIN(2) |
                                                SM_PD_GAIN(3) | SM_PD_GAIN(4));
                                } else {
                                        REG_WRITE(ah,
                                                AR_PHY_TPCRG5 + regChainOffset,
                                                SM(pdGainOverlap_t2,
                                                AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
                                                SM_PDGAIN_B(0, 1) |
                                                SM_PDGAIN_B(1, 2) |
                                                SM_PDGAIN_B(2, 3) |
                                                SM_PDGAIN_B(3, 4));
                                }
                        }


                        ath9k_adjust_pdadc_values(ah, pwr_table_offset,
                                                  diff, pdadcValues);

                        regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
                        for (j = 0; j < 32; j++) {
                                reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
                                        ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
                                        ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
                                        ((pdadcValues[4 * j + 3] & 0xFF) << 24);
                                REG_WRITE(ah, regOffset, reg32);

                                DBG2("ath9k: "
                                        "PDADC (%d,%4x): %4.4x %8.8x\n",
                                        i, regChainOffset, regOffset,
                                        reg32);
                                DBG2("ath9k: "
                                        "PDADC: Chain %d | PDADC %3d "
                                        "Value %3d | PDADC %3d Value %3d | "
                                        "PDADC %3d Value %3d | PDADC %3d "
                                        "Value %3d |\n",
                                        i, 4 * j, pdadcValues[4 * j],
                                        4 * j + 1, pdadcValues[4 * j + 1],
                                        4 * j + 2, pdadcValues[4 * j + 2],
                                        4 * j + 3, pdadcValues[4 * j + 3]);

                                regOffset += 4;
                        }
                        REGWRITE_BUFFER_FLUSH(ah);
                }
        }

        *pTxPowerIndexOffset = 0;
#undef SM_PD_GAIN
#undef SM_PDGAIN_B
}
static void ath9k_hw_set_def_power_per_rate_table ( struct ath_hw ah,
struct ath9k_channel chan,
int16_t ratesArray,
u16  cfgCtl,
u16  AntennaReduction,
u16  twiceMaxRegulatoryPower,
u16  powerLimit 
) [static]

Definition at line 870 of file ath9k_eeprom_def.c.

References ar5416_get_ntxchains, AR5416_NUM_2G_20_TARGET_POWERS, AR5416_NUM_2G_40_TARGET_POWERS, AR5416_NUM_2G_CCK_TARGET_POWERS, AR5416_NUM_5G_20_TARGET_POWERS, AR5416_NUM_5G_40_TARGET_POWERS, AR5416_NUM_BAND_EDGES, AR5416_NUM_CTLS, ARRAY_SIZE, ath9k_hw_get_channel_centers(), ath9k_hw_get_legacy_target_powers(), ath9k_hw_get_max_edge_power(), ath9k_hw_get_target_powers(), ath9k_hw_regulatory(), ATH9K_TP_SCALE_MAX, ar5416_eeprom_def::calTargetPower2G, ar5416_eeprom_def::calTargetPower2GHT20, ar5416_eeprom_def::calTargetPower2GHT40, ar5416_eeprom_def::calTargetPower5G, ar5416_eeprom_def::calTargetPower5GHT20, ar5416_eeprom_def::calTargetPower5GHT40, ar5416_eeprom_def::calTargetPowerCck, CTL_11A, CTL_11A_EXT, CTL_11B, CTL_11B_EXT, CTL_11G, CTL_11G_EXT, CTL_2GHT20, CTL_2GHT40, CTL_5GHT20, CTL_5GHT40, chan_centers::ctl_center, CTL_MODE_M, ar5416_eeprom_def::ctlData, cal_ctl_data::ctlEdges, ar5416_eeprom_def::ctlIndex, ath_hw::def, ath_hw::eep_ops, ath_hw::eeprom, EXT_ADDITIVE, chan_centers::ext_center, eeprom_ops::get_eeprom_rev, eeprom_ops::get_eeprom_ver, IS_CHAN_2GHZ, IS_CHAN_HT40, max, MAX_RATE_POWER, min, ar5416_eeprom_def::modalHeader, rate11l, rate11s, rate12mb, rate18mb, rate1l, rate24mb, rate2l, rate2s, rate36mb, rate48mb, rate54mb, rate5_5l, rate5_5s, rate6mb, rate9mb, rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm, rateHt20_0, rateHt40_0, rateXr, REDUCE_SCALED_POWER_BY_THREE_CHAIN, REDUCE_SCALED_POWER_BY_TWO_CHAIN, SD_NO_CTL, SUB_NUM_CTL_MODES_AT_2G_40, SUB_NUM_CTL_MODES_AT_5G_40, chan_centers::synth_center, ath_regulatory::tp_scale, cal_target_power_leg::tPow2x, cal_target_power_ht::tPow2x, and ath_hw::txchainmask.

Referenced by ath9k_hw_def_set_txpower().

{
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9 /* 10*log10(3)*2 */

        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
        struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
        u16 twiceMaxEdgePower = MAX_RATE_POWER;
        static const u16 tpScaleReductionTable[5] =
                { 0, 3, 6, 9, MAX_RATE_POWER };

        unsigned int i;
        int16_t twiceLargestAntenna;
        struct cal_ctl_data *rep;
        struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
                0, { 0, 0, 0, 0}
        };
        struct cal_target_power_leg targetPowerOfdmExt = {
                0, { 0, 0, 0, 0} }, targetPowerCckExt = {
                0, { 0, 0, 0, 0 }
        };
        struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
                0, {0, 0, 0, 0}
        };
        u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
        static const u16 ctlModesFor11a[] = {
                CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
        };
        static const u16 ctlModesFor11g[] = {
                CTL_11B, CTL_11G, CTL_2GHT20,
                CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
        };
        u16 numCtlModes;
        const u16 *pCtlMode;
        u16 ctlMode, freq;
        struct chan_centers centers;
        int tx_chainmask;
        u16 twiceMinEdgePower;

        tx_chainmask = ah->txchainmask;

        ath9k_hw_get_channel_centers(ah, chan, &centers);

        twiceLargestAntenna = max(
                pEepData->modalHeader
                        [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
                pEepData->modalHeader
                        [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);

        twiceLargestAntenna = max((u8)twiceLargestAntenna,
                                  pEepData->modalHeader
                                  [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);

        twiceLargestAntenna = (int16_t)min(AntennaReduction -
                                           twiceLargestAntenna, 0);

        maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;

        if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
                maxRegAllowedPower -=
                        (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
        }

        scaledPower = min(powerLimit, maxRegAllowedPower);

        switch (ar5416_get_ntxchains(tx_chainmask)) {
        case 1:
                break;
        case 2:
                if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
                        scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
                else
                        scaledPower = 0;
                break;
        case 3:
                if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
                        scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
                else
                        scaledPower = 0;
                break;
        }

        if (IS_CHAN_2GHZ(chan)) {
                numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
                        SUB_NUM_CTL_MODES_AT_2G_40;
                pCtlMode = ctlModesFor11g;

                ath9k_hw_get_legacy_target_powers(ah, chan,
                        pEepData->calTargetPowerCck,
                        AR5416_NUM_2G_CCK_TARGET_POWERS,
                        &targetPowerCck, 4, 0);
                ath9k_hw_get_legacy_target_powers(ah, chan,
                        pEepData->calTargetPower2G,
                        AR5416_NUM_2G_20_TARGET_POWERS,
                        &targetPowerOfdm, 4, 0);
                ath9k_hw_get_target_powers(ah, chan,
                        pEepData->calTargetPower2GHT20,
                        AR5416_NUM_2G_20_TARGET_POWERS,
                        &targetPowerHt20, 8, 0);

                if (IS_CHAN_HT40(chan)) {
                        numCtlModes = ARRAY_SIZE(ctlModesFor11g);
                        ath9k_hw_get_target_powers(ah, chan,
                                pEepData->calTargetPower2GHT40,
                                AR5416_NUM_2G_40_TARGET_POWERS,
                                &targetPowerHt40, 8, 1);
                        ath9k_hw_get_legacy_target_powers(ah, chan,
                                pEepData->calTargetPowerCck,
                                AR5416_NUM_2G_CCK_TARGET_POWERS,
                                &targetPowerCckExt, 4, 1);
                        ath9k_hw_get_legacy_target_powers(ah, chan,
                                pEepData->calTargetPower2G,
                                AR5416_NUM_2G_20_TARGET_POWERS,
                                &targetPowerOfdmExt, 4, 1);
                }
        } else {
                numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
                        SUB_NUM_CTL_MODES_AT_5G_40;
                pCtlMode = ctlModesFor11a;

                ath9k_hw_get_legacy_target_powers(ah, chan,
                        pEepData->calTargetPower5G,
                        AR5416_NUM_5G_20_TARGET_POWERS,
                        &targetPowerOfdm, 4, 0);
                ath9k_hw_get_target_powers(ah, chan,
                        pEepData->calTargetPower5GHT20,
                        AR5416_NUM_5G_20_TARGET_POWERS,
                        &targetPowerHt20, 8, 0);

                if (IS_CHAN_HT40(chan)) {
                        numCtlModes = ARRAY_SIZE(ctlModesFor11a);
                        ath9k_hw_get_target_powers(ah, chan,
                                pEepData->calTargetPower5GHT40,
                                AR5416_NUM_5G_40_TARGET_POWERS,
                                &targetPowerHt40, 8, 1);
                        ath9k_hw_get_legacy_target_powers(ah, chan,
                                pEepData->calTargetPower5G,
                                AR5416_NUM_5G_20_TARGET_POWERS,
                                &targetPowerOfdmExt, 4, 1);
                }
        }

        for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
                int isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
                        (pCtlMode[ctlMode] == CTL_2GHT40);
                if (isHt40CtlMode)
                        freq = centers.synth_center;
                else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
                        freq = centers.ext_center;
                else
                        freq = centers.ctl_center;

                if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
                    ah->eep_ops->get_eeprom_rev(ah) <= 2)
                        twiceMaxEdgePower = MAX_RATE_POWER;

                for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
                        if ((((cfgCtl & ~CTL_MODE_M) |
                              (pCtlMode[ctlMode] & CTL_MODE_M)) ==
                             pEepData->ctlIndex[i]) ||
                            (((cfgCtl & ~CTL_MODE_M) |
                              (pCtlMode[ctlMode] & CTL_MODE_M)) ==
                             ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
                                rep = &(pEepData->ctlData[i]);

                                twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
                                rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
                                IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);

                                if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
                                        twiceMaxEdgePower = min(twiceMaxEdgePower,
                                                                twiceMinEdgePower);
                                } else {
                                        twiceMaxEdgePower = twiceMinEdgePower;
                                        break;
                                }
                        }
                }

                minCtlPower = min(twiceMaxEdgePower, scaledPower);

                switch (pCtlMode[ctlMode]) {
                case CTL_11B:
                        for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
                                targetPowerCck.tPow2x[i] =
                                        min((u16)targetPowerCck.tPow2x[i],
                                            minCtlPower);
                        }
                        break;
                case CTL_11A:
                case CTL_11G:
                        for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
                                targetPowerOfdm.tPow2x[i] =
                                        min((u16)targetPowerOfdm.tPow2x[i],
                                            minCtlPower);
                        }
                        break;
                case CTL_5GHT20:
                case CTL_2GHT20:
                        for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
                                targetPowerHt20.tPow2x[i] =
                                        min((u16)targetPowerHt20.tPow2x[i],
                                            minCtlPower);
                        }
                        break;
                case CTL_11B_EXT:
                        targetPowerCckExt.tPow2x[0] = min((u16)
                                        targetPowerCckExt.tPow2x[0],
                                        minCtlPower);
                        break;
                case CTL_11A_EXT:
                case CTL_11G_EXT:
                        targetPowerOfdmExt.tPow2x[0] = min((u16)
                                        targetPowerOfdmExt.tPow2x[0],
                                        minCtlPower);
                        break;
                case CTL_5GHT40:
                case CTL_2GHT40:
                        for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
                                targetPowerHt40.tPow2x[i] =
                                        min((u16)targetPowerHt40.tPow2x[i],
                                            minCtlPower);
                        }
                        break;
                default:
                        break;
                }
        }

        ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
                ratesArray[rate18mb] = ratesArray[rate24mb] =
                targetPowerOfdm.tPow2x[0];
        ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
        ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
        ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
        ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];

        for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
                ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];

        if (IS_CHAN_2GHZ(chan)) {
                ratesArray[rate1l] = targetPowerCck.tPow2x[0];
                ratesArray[rate2s] = ratesArray[rate2l] =
                        targetPowerCck.tPow2x[1];
                ratesArray[rate5_5s] = ratesArray[rate5_5l] =
                        targetPowerCck.tPow2x[2];
                ratesArray[rate11s] = ratesArray[rate11l] =
                        targetPowerCck.tPow2x[3];
        }
        if (IS_CHAN_HT40(chan)) {
                for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
                        ratesArray[rateHt40_0 + i] =
                                targetPowerHt40.tPow2x[i];
                }
                ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
                ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
                ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
                if (IS_CHAN_2GHZ(chan)) {
                        ratesArray[rateExtCck] =
                                targetPowerCckExt.tPow2x[0];
                }
        }
}
static void ath9k_hw_def_set_txpower ( struct ath_hw ah,
struct ath9k_channel chan,
u16  cfgCtl,
u8  twiceAntennaReduction,
u8  twiceMaxRegulatoryPower,
u8  powerLimit,
int  test 
) [static]

Definition at line 1140 of file ath9k_eeprom_def.c.

References AR5416_EEP_MINOR_VER_2, AR5416_EEP_VER_MINOR_MASK, ar5416_get_ntxchains, Ar5416RateSize, AR_PHY_POWER_TX_RATE1, AR_PHY_POWER_TX_RATE2, AR_PHY_POWER_TX_RATE3, AR_PHY_POWER_TX_RATE4, AR_PHY_POWER_TX_RATE5, AR_PHY_POWER_TX_RATE6, AR_PHY_POWER_TX_RATE7, AR_PHY_POWER_TX_RATE8, AR_PHY_POWER_TX_RATE9, AR_PHY_POWER_TX_SUB, AR_SREV_9280_20_OR_LATER, ARRAY_SIZE, ath9k_hw_regulatory(), ath9k_hw_set_def_power_cal_table(), ath9k_hw_set_def_power_per_rate_table(), ATH9K_POW_SM, ar5416_eeprom_def::baseEepHeader, DBG2, ath_hw::def, ath_hw::eep_ops, EEP_PWR_TABLE_OFFSET, ath_hw::eeprom, ENABLE_REGWRITE_BUFFER, eeprom_ops::get_eeprom, modal_eep_header::ht40PowerIncForPdadc, INCREASE_MAXPOW_BY_THREE_CHAIN, INCREASE_MAXPOW_BY_TWO_CHAIN, IS_CHAN_2GHZ, IS_CHAN_HT20, IS_CHAN_HT40, ath_regulatory::max_power_level, MAX_RATE_POWER, memset(), ar5416_eeprom_def::modalHeader, OLC_FOR_AR9280_20_LATER, modal_eep_header::pwrDecreaseFor2Chain, modal_eep_header::pwrDecreaseFor3Chain, rate11l, rate11s, rate12mb, rate18mb, rate1l, rate24mb, rate2l, rate2s, rate36mb, rate48mb, rate54mb, rate5_5l, rate5_5s, rate6mb, rate9mb, rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm, rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3, rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7, rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3, rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7, rateXr, REG_WRITE, REGWRITE_BUFFER_FLUSH, RT_AR_DELTA, ath_hw::txchainmask, and base_eep_header::version.

{
#define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
        struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
        struct modal_eep_header *pModal =
                &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
        int16_t ratesArray[Ar5416RateSize];
        int16_t txPowerIndexOffset = 0;
        u8 ht40PowerIncForPdadc = 2;
        unsigned int i, cck_ofdm_delta = 0;

        memset(ratesArray, 0, sizeof(ratesArray));

        if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
            AR5416_EEP_MINOR_VER_2) {
                ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
        }

        ath9k_hw_set_def_power_per_rate_table(ah, chan,
                                               &ratesArray[0], cfgCtl,
                                               twiceAntennaReduction,
                                               twiceMaxRegulatoryPower,
                                               powerLimit);

        ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);

        regulatory->max_power_level = 0;
        for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
                ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
                if (ratesArray[i] > MAX_RATE_POWER)
                        ratesArray[i] = MAX_RATE_POWER;
                if (ratesArray[i] > regulatory->max_power_level)
                        regulatory->max_power_level = ratesArray[i];
        }

        if (!test) {
                i = rate6mb;

                if (IS_CHAN_HT40(chan))
                        i = rateHt40_0;
                else if (IS_CHAN_HT20(chan))
                        i = rateHt20_0;

                regulatory->max_power_level = ratesArray[i];
        }

        switch(ar5416_get_ntxchains(ah->txchainmask)) {
        case 1:
                break;
        case 2:
                regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
                break;
        case 3:
                regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
                break;
        default:
                DBG2("ath9k: "
                        "Invalid chainmask configuration\n");
                break;
        }

        if (test)
                return;

        if (AR_SREV_9280_20_OR_LATER(ah)) {
                for (i = 0; i < Ar5416RateSize; i++) {
                        int8_t pwr_table_offset;

                        pwr_table_offset = ah->eep_ops->get_eeprom(ah,
                                                        EEP_PWR_TABLE_OFFSET);
                        ratesArray[i] -= pwr_table_offset * 2;
                }
        }

        ENABLE_REGWRITE_BUFFER(ah);

        REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
                  ATH9K_POW_SM(ratesArray[rate18mb], 24)
                  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
                  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
                  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
        REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
                  ATH9K_POW_SM(ratesArray[rate54mb], 24)
                  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
                  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
                  | ATH9K_POW_SM(ratesArray[rate24mb], 0));

        if (IS_CHAN_2GHZ(chan)) {
                if (OLC_FOR_AR9280_20_LATER) {
                        cck_ofdm_delta = 2;
                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
                                ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
                                | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
                                | ATH9K_POW_SM(ratesArray[rateXr], 8)
                                | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
                                ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
                                | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
                                | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
                                | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
                } else {
                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
                                ATH9K_POW_SM(ratesArray[rate2s], 24)
                                | ATH9K_POW_SM(ratesArray[rate2l], 16)
                                | ATH9K_POW_SM(ratesArray[rateXr], 8)
                                | ATH9K_POW_SM(ratesArray[rate1l], 0));
                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
                                ATH9K_POW_SM(ratesArray[rate11s], 24)
                                | ATH9K_POW_SM(ratesArray[rate11l], 16)
                                | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
                                | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
                }
        }

        REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
                  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
                  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
                  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
                  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
        REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
                  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
                  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
                  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
                  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));

        if (IS_CHAN_HT40(chan)) {
                REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
                          ATH9K_POW_SM(ratesArray[rateHt40_3] +
                                       ht40PowerIncForPdadc, 24)
                          | ATH9K_POW_SM(ratesArray[rateHt40_2] +
                                         ht40PowerIncForPdadc, 16)
                          | ATH9K_POW_SM(ratesArray[rateHt40_1] +
                                         ht40PowerIncForPdadc, 8)
                          | ATH9K_POW_SM(ratesArray[rateHt40_0] +
                                         ht40PowerIncForPdadc, 0));
                REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
                          ATH9K_POW_SM(ratesArray[rateHt40_7] +
                                       ht40PowerIncForPdadc, 24)
                          | ATH9K_POW_SM(ratesArray[rateHt40_6] +
                                         ht40PowerIncForPdadc, 16)
                          | ATH9K_POW_SM(ratesArray[rateHt40_5] +
                                         ht40PowerIncForPdadc, 8)
                          | ATH9K_POW_SM(ratesArray[rateHt40_4] +
                                         ht40PowerIncForPdadc, 0));
                if (OLC_FOR_AR9280_20_LATER) {
                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
                                ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
                                | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
                                | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
                                | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
                } else {
                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
                                ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
                                | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
                                | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
                                | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
                }
        }

        REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
                  ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
                  | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));

        REGWRITE_BUFFER_FLUSH(ah);
}
static u16 ath9k_hw_def_get_spur_channel ( struct ath_hw ah,
u16  i,
int  is2GHz 
) [static]

Definition at line 1312 of file ath9k_eeprom_def.c.

References AR_NO_SPUR, ath_hw::config, DBG2, EEP_DEF_SPURCHAN, SPUR_DISABLE, SPUR_ENABLE_EEPROM, SPUR_ENABLE_IOCTL, ath9k_ops_config::spurchans, and ath9k_ops_config::spurmode.

{
#define EEP_DEF_SPURCHAN \
        (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)

        u16 spur_val = AR_NO_SPUR;

        DBG2("ath9k: "
                "Getting spur idx:%d is2Ghz:%d val:%x\n",
                i, is2GHz, ah->config.spurchans[i][is2GHz]);

        switch (ah->config.spurmode) {
        case SPUR_DISABLE:
                break;
        case SPUR_ENABLE_IOCTL:
                spur_val = ah->config.spurchans[i][is2GHz];
                DBG2("ath9k: "
                        "Getting spur val from new loc. %d\n", spur_val);
                break;
        case SPUR_ENABLE_EEPROM:
                spur_val = EEP_DEF_SPURCHAN;
                break;
        }

        return spur_val;

#undef EEP_DEF_SPURCHAN
}

Variable Documentation

Initial value:
 {
        .check_eeprom           = ath9k_hw_def_check_eeprom,
        .get_eeprom             = ath9k_hw_def_get_eeprom,
        .fill_eeprom            = ath9k_hw_def_fill_eeprom,
        .get_eeprom_ver         = ath9k_hw_def_get_eeprom_ver,
        .get_eeprom_rev         = ath9k_hw_def_get_eeprom_rev,
        .set_board_values       = ath9k_hw_def_set_board_values,
        .set_addac              = ath9k_hw_def_set_addac,
        .set_txpower            = ath9k_hw_def_set_txpower,
        .get_spur_channel       = ath9k_hw_def_get_spur_channel
}

Definition at line 1341 of file ath9k_eeprom_def.c.

Referenced by ath9k_hw_eeprom_init().