iPXE
Defines | Functions | Variables
ath9k_eeprom_9287.c File Reference
#include <ipxe/io.h>
#include "hw.h"
#include "ar9002_phy.h"

Go to the source code of this file.

Defines

#define SIZE_EEPROM_AR9287   (sizeof(struct ar9287_eeprom) / sizeof(u16))
#define CMP_CTL
#define CMP_NO_CTL
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN   6
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
#define EEP_MAP9287_SPURCHAN   (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)

Functions

static int ath9k_hw_ar9287_get_eeprom_ver (struct ath_hw *ah)
static int ath9k_hw_ar9287_get_eeprom_rev (struct ath_hw *ah)
static int __ath9k_hw_ar9287_fill_eeprom (struct ath_hw *ah)
static int __ath9k_hw_usb_ar9287_fill_eeprom (struct ath_hw *ah)
static int ath9k_hw_ar9287_fill_eeprom (struct ath_hw *ah)
static int ath9k_hw_ar9287_check_eeprom (struct ath_hw *ah)
static u32 ath9k_hw_ar9287_get_eeprom (struct ath_hw *ah, enum eeprom_param param)
static void ar9287_eeprom_get_tx_gain_index (struct ath_hw *ah, struct ath9k_channel *chan, struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop, u8 *pCalChans, u16 availPiers, int8_t *pPwr)
static void ar9287_eeprom_olpc_set_pdadcs (struct ath_hw *ah, int32_t txPower, u16 chain)
static void ath9k_hw_set_ar9287_power_cal_table (struct ath_hw *ah, struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset)
static void ath9k_hw_set_ar9287_power_per_rate_table (struct ath_hw *ah, struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl, u16 AntennaReduction, u16 twiceMaxRegulatoryPower, u16 powerLimit)
static void ath9k_hw_ar9287_set_txpower (struct ath_hw *ah, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit, int test)
static void ath9k_hw_ar9287_set_addac (struct ath_hw *ah __unused, struct ath9k_channel *chan __unused)
static void ath9k_hw_ar9287_set_board_values (struct ath_hw *ah, struct ath9k_channel *chan)
static u16 ath9k_hw_ar9287_get_spur_channel (struct ath_hw *ah, u16 i, int is2GHz)

Variables

struct eeprom_ops eep_ar9287_ops

Define Documentation

#define SIZE_EEPROM_AR9287   (sizeof(struct ar9287_eeprom) / sizeof(u16))
#define CMP_CTL
Value:
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
         pEepData->ctlIndex[i])

Referenced by ath9k_hw_set_ar9287_power_per_rate_table().

#define CMP_NO_CTL
Value:
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
         ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))

Referenced by ath9k_hw_set_ar9287_power_per_rate_table().


Function Documentation

static int ath9k_hw_ar9287_get_eeprom_ver ( struct ath_hw ah) [static]
static int ath9k_hw_ar9287_get_eeprom_rev ( struct ath_hw ah) [static]
static int __ath9k_hw_ar9287_fill_eeprom ( struct ath_hw ah) [static]

Definition at line 37 of file ath9k_eeprom_9287.c.

References addr, AR9287_EEP_START_LOC, ath9k_hw_common(), ath9k_hw_nvram_read(), common, DBG, ath_hw::eeprom, ath_hw::map9287, and SIZE_EEPROM_AR9287.

Referenced by ath9k_hw_ar9287_fill_eeprom().

{
        struct ar9287_eeprom *eep = &ah->eeprom.map9287;
        struct ath_common *common = ath9k_hw_common(ah);
        u16 *eep_data;
        unsigned int addr;
        int eep_start_loc = AR9287_EEP_START_LOC;
        eep_data = (u16 *)eep;

        for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
                if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
                                         eep_data)) {
                        DBG("ath9k: "
                                "Unable to read eeprom region\n");
                        return 0;
                }
                eep_data++;
        }

        return 1;
}
static int __ath9k_hw_usb_ar9287_fill_eeprom ( struct ath_hw ah) [static]
static int ath9k_hw_ar9287_fill_eeprom ( struct ath_hw ah) [static]
static int ath9k_hw_ar9287_check_eeprom ( struct ath_hw ah) [static]

Definition at line 84 of file ath9k_eeprom_9287.c.

References addr, modal_eep_ar9287_header::antCtrlChain, modal_eep_ar9287_header::antCtrlCommon, AR5416_EEP_NO_BACK_VER, AR5416_EEPROM_MAGIC, AR5416_EEPROM_MAGIC_OFFSET, AR9287_EEP_VER, AR9287_MAX_CHAINS, AR_EEPROM_MODAL_SPURS, ath9k_hw_common(), ath9k_hw_nvram_read(), ath9k_hw_use_flash, ar9287_eeprom::baseEepHeader, base_eep_ar9287_header::blueToothOptions, base_eep_ar9287_header::checksum, common, DBG, DBG2, base_eep_ar9287_header::deviceCap, ath_hw::eep_ops, ath_hw::eeprom, EINVAL, eeprom_ops::get_eeprom_rev, eeprom_ops::get_eeprom_ver, base_eep_ar9287_header::length, magic, ath_hw::map9287, ar9287_eeprom::modalHeader, base_eep_ar9287_header::regDmn, base_eep_ar9287_header::rfSilent, SIZE_EEPROM_AR9287, spur_chan::spurChan, modal_eep_ar9287_header::spurChans, swab16, swab32, u16, and base_eep_ar9287_header::version.

{
        u32 sum = 0, el, integer;
        u16 temp, word, magic, magic2, *eepdata;
        unsigned int i, addr;
        int need_swap = 0;
        struct ar9287_eeprom *eep = &ah->eeprom.map9287;
        struct ath_common *common = ath9k_hw_common(ah);

        if (!ath9k_hw_use_flash(ah)) {
                if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
                                         &magic)) {
                        DBG("ath9k: Reading Magic # failed\n");
                        return 0;
                }

                DBG2("ath9k: "
                        "Read Magic = 0x%04X\n", magic);

                if (magic != AR5416_EEPROM_MAGIC) {
                        magic2 = swab16(magic);

                        if (magic2 == AR5416_EEPROM_MAGIC) {
                                need_swap = 1;
                                eepdata = (u16 *)(&ah->eeprom);

                                for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
                                        temp = swab16(*eepdata);
                                        *eepdata = temp;
                                        eepdata++;
                                }
                        } else {
                                DBG("ath9k: "
                                        "Invalid EEPROM Magic. Endianness mismatch.\n");
                                return -EINVAL;
                        }
                }
        }

        DBG2("ath9k: need_swap = %s.\n",
                need_swap ? "True" : "False");

        if (need_swap)
                el = swab16(ah->eeprom.map9287.baseEepHeader.length);
        else
                el = ah->eeprom.map9287.baseEepHeader.length;

        if (el > sizeof(struct ar9287_eeprom))
                el = sizeof(struct ar9287_eeprom) / sizeof(u16);
        else
                el = el / sizeof(u16);

        eepdata = (u16 *)(&ah->eeprom);

        for (i = 0; i < el; i++)
                sum ^= *eepdata++;

        if (need_swap) {
                word = swab16(eep->baseEepHeader.length);
                eep->baseEepHeader.length = word;

                word = swab16(eep->baseEepHeader.checksum);
                eep->baseEepHeader.checksum = word;

                word = swab16(eep->baseEepHeader.version);
                eep->baseEepHeader.version = word;

                word = swab16(eep->baseEepHeader.regDmn[0]);
                eep->baseEepHeader.regDmn[0] = word;

                word = swab16(eep->baseEepHeader.regDmn[1]);
                eep->baseEepHeader.regDmn[1] = word;

                word = swab16(eep->baseEepHeader.rfSilent);
                eep->baseEepHeader.rfSilent = word;

                word = swab16(eep->baseEepHeader.blueToothOptions);
                eep->baseEepHeader.blueToothOptions = word;

                word = swab16(eep->baseEepHeader.deviceCap);
                eep->baseEepHeader.deviceCap = word;

                integer = swab32(eep->modalHeader.antCtrlCommon);
                eep->modalHeader.antCtrlCommon = integer;

                for (i = 0; i < AR9287_MAX_CHAINS; i++) {
                        integer = swab32(eep->modalHeader.antCtrlChain[i]);
                        eep->modalHeader.antCtrlChain[i] = integer;
                }

                for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
                        word = swab16(eep->modalHeader.spurChans[i].spurChan);
                        eep->modalHeader.spurChans[i].spurChan = word;
                }
        }

        if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
            || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
                DBG("ath9k: Bad EEPROM checksum 0x%x or revision 0x%04x\n",
                        sum, ah->eep_ops->get_eeprom_ver(ah));
                return -EINVAL;
        }

        return 0;
}
static u32 ath9k_hw_ar9287_get_eeprom ( struct ath_hw ah,
enum eeprom_param  param 
) [static]

Definition at line 190 of file ath9k_eeprom_9287.c.

References AR9287_EEP_MINOR_VER_2, AR9287_EEP_MINOR_VER_3, AR9287_EEP_VER_MINOR_MASK, ar9287_eeprom::baseEepHeader, base_eep_ar9287_header::deviceCap, base_eep_ar9287_header::deviceType, EEP_DEV_TYPE, EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW, EEP_MINOR_REV, EEP_NFTHRESH_2, EEP_OL_PWRCTRL, EEP_OP_CAP, EEP_OP_MODE, EEP_REG_0, EEP_REG_1, EEP_RF_SILENT, EEP_RX_MASK, EEP_TEMPSENSE_SLOPE, EEP_TEMPSENSE_SLOPE_PAL_ON, EEP_TX_MASK, ath_hw::eeprom, base_eep_ar9287_header::macAddr, ath_hw::map9287, ar9287_eeprom::modalHeader, modal_eep_ar9287_header::noiseFloorThreshCh, base_eep_ar9287_header::opCapFlags, base_eep_ar9287_header::openLoopPwrCntl, base_eep_ar9287_header::regDmn, base_eep_ar9287_header::rfSilent, base_eep_ar9287_header::rxMask, base_eep_ar9287_header::tempSensSlope, base_eep_ar9287_header::tempSensSlopePalOn, base_eep_ar9287_header::txMask, and base_eep_ar9287_header::version.

Referenced by ath9k_hw_ar9287_set_txpower(), and ath9k_hw_set_ar9287_power_cal_table().

{
        struct ar9287_eeprom *eep = &ah->eeprom.map9287;
        struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
        struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
        u16 ver_minor;

        ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;

        switch (param) {
        case EEP_NFTHRESH_2:
                return pModal->noiseFloorThreshCh[0];
        case EEP_MAC_LSW:
                return pBase->macAddr[0] << 8 | pBase->macAddr[1];
        case EEP_MAC_MID:
                return pBase->macAddr[2] << 8 | pBase->macAddr[3];
        case EEP_MAC_MSW:
                return pBase->macAddr[4] << 8 | pBase->macAddr[5];
        case EEP_REG_0:
                return pBase->regDmn[0];
        case EEP_REG_1:
                return pBase->regDmn[1];
        case EEP_OP_CAP:
                return pBase->deviceCap;
        case EEP_OP_MODE:
                return pBase->opCapFlags;
        case EEP_RF_SILENT:
                return pBase->rfSilent;
        case EEP_MINOR_REV:
                return ver_minor;
        case EEP_TX_MASK:
                return pBase->txMask;
        case EEP_RX_MASK:
                return pBase->rxMask;
        case EEP_DEV_TYPE:
                return pBase->deviceType;
        case EEP_OL_PWRCTRL:
                return pBase->openLoopPwrCntl;
        case EEP_TEMPSENSE_SLOPE:
                if (ver_minor >= AR9287_EEP_MINOR_VER_2)
                        return pBase->tempSensSlope;
                else
                        return 0;
        case EEP_TEMPSENSE_SLOPE_PAL_ON:
                if (ver_minor >= AR9287_EEP_MINOR_VER_3)
                        return pBase->tempSensSlopePalOn;
                else
                        return 0;
        default:
                return 0;
        }
}
static void ar9287_eeprom_get_tx_gain_index ( struct ath_hw ah,
struct ath9k_channel chan,
struct cal_data_op_loop_ar9287 pRawDatasetOpLoop,
u8 pCalChans,
u16  availPiers,
int8_t pPwr 
) [static]

Definition at line 244 of file ath9k_eeprom_9287.c.

References AR5416_BCHAN_UNUSED, ath9k_hw_get_channel_centers(), ath9k_hw_get_lower_upper_index(), FREQ2FBIN, IS_CHAN_2GHZ, cal_data_op_loop_ar9287::pwrPdg, and chan_centers::synth_center.

Referenced by ath9k_hw_set_ar9287_power_cal_table().

{
        u16 idxL = 0, idxR = 0, numPiers;
        int match;
        struct chan_centers centers;

        ath9k_hw_get_channel_centers(ah, chan, &centers);

        for (numPiers = 0; numPiers < availPiers; numPiers++) {
                if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
                        break;
        }

        match = ath9k_hw_get_lower_upper_index(
                (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
                pCalChans, numPiers, &idxL, &idxR);

        if (match) {
                *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
        } else {
                *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
                         (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
        }

}
static void ar9287_eeprom_olpc_set_pdadcs ( struct ath_hw ah,
int32_t  txPower,
u16  chain 
) [static]

Definition at line 273 of file ath9k_eeprom_9287.c.

References REG_READ, and REG_WRITE.

Referenced by ath9k_hw_set_ar9287_power_cal_table().

{
        u32 tmpVal;
        u32 a;

        /* Enable OLPC for chain 0 */

        tmpVal = REG_READ(ah, 0xa270);
        tmpVal = tmpVal & 0xFCFFFFFF;
        tmpVal = tmpVal | (0x3 << 24);
        REG_WRITE(ah, 0xa270, tmpVal);

        /* Enable OLPC for chain 1 */

        tmpVal = REG_READ(ah, 0xb270);
        tmpVal = tmpVal & 0xFCFFFFFF;
        tmpVal = tmpVal | (0x3 << 24);
        REG_WRITE(ah, 0xb270, tmpVal);

        /* Write the OLPC ref power for chain 0 */

        if (chain == 0) {
                tmpVal = REG_READ(ah, 0xa398);
                tmpVal = tmpVal & 0xff00ffff;
                a = (txPower)&0xff;
                tmpVal = tmpVal | (a << 16);
                REG_WRITE(ah, 0xa398, tmpVal);
        }

        /* Write the OLPC ref power for chain 1 */

        if (chain == 1) {
                tmpVal = REG_READ(ah, 0xb398);
                tmpVal = tmpVal & 0xff00ffff;
                a = (txPower)&0xff;
                tmpVal = tmpVal | (a << 16);
                REG_WRITE(ah, 0xb398, tmpVal);
        }
}
static void ath9k_hw_set_ar9287_power_cal_table ( struct ath_hw ah,
struct ath9k_channel chan,
int16_t pTxPowerIndexOffset 
) [static]

Definition at line 314 of file ath9k_eeprom_9287.c.

References AR5416_NUM_PD_GAINS, AR5416_NUM_PDADC_VALUES, AR5416_PD_GAINS_IN_MASK, AR9287_EEP_MINOR_VER_2, AR9287_EEP_VER_MINOR_MASK, ar9287_eeprom_get_tx_gain_index(), ar9287_eeprom_olpc_set_pdadcs(), AR9287_MAX_CHAINS, AR9287_NUM_2G_CAL_PIERS, AR9287_PWR_TABLE_OFFSET_DB, AR_PHY_BASE, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, AR_PHY_TPCRG1_PD_GAIN_1, AR_PHY_TPCRG1_PD_GAIN_2, AR_PHY_TPCRG1_PD_GAIN_3, AR_PHY_TPCRG5, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, AR_PHY_TPCRG5_PD_GAIN_OVERLAP, ath9k_hw_ar9287_get_eeprom(), ath9k_hw_get_gain_boundaries_pdadcs(), ar9287_eeprom::baseEepHeader, ar9287_eeprom::calFreqPier2G, ar9287_eeprom::calPierData2G, EEP_OL_PWRCTRL, ath_hw::eeprom, ENABLE_REGWRITE_BUFFER, ath_hw::initPDADC, IS_CHAN_2GHZ, ath_hw::map9287, ar9287_eeprom::modalHeader, MS, NULL, modal_eep_ar9287_header::pdGainOverlap, base_eep_ar9287_header::pwrTableOffset, REG_READ, REG_RMW_FIELD, REG_WRITE, REGWRITE_BUFFER_FLUSH, SM, base_eep_ar9287_header::txMask, u16, base_eep_ar9287_header::version, cal_data_op_loop_ar9287::vpdPdg, and modal_eep_ar9287_header::xpdGain.

Referenced by ath9k_hw_ar9287_set_txpower().

{
        struct cal_data_per_freq_ar9287 *pRawDataset;
        struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
        u8 *pCalBChans = NULL;
        u16 pdGainOverlap_t2;
        u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
        u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
        u16 numPiers = 0, i, j;
        u16 numXpdGain, xpdMask;
        u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
        u32 reg32, regOffset, regChainOffset, regval;
        int16_t diff = 0;
        struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;

        xpdMask = pEepData->modalHeader.xpdGain;

        if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
            AR9287_EEP_MINOR_VER_2)
                pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
        else
                pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
                                            AR_PHY_TPCRG5_PD_GAIN_OVERLAP));

        if (IS_CHAN_2GHZ(chan)) {
                pCalBChans = pEepData->calFreqPier2G;
                numPiers = AR9287_NUM_2G_CAL_PIERS;
                if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
                        pRawDatasetOpenLoop =
                        (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
                        ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
                }
        }

        numXpdGain = 0;

        /* Calculate the value of xpdgains from the xpdGain Mask */
        for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
                if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
                        if (numXpdGain >= AR5416_NUM_PD_GAINS)
                                break;
                        xpdGainValues[numXpdGain] =
                                (u16)(AR5416_PD_GAINS_IN_MASK-i);
                        numXpdGain++;
                }
        }

        REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
                      (numXpdGain - 1) & 0x3);
        REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
                      xpdGainValues[0]);
        REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
                      xpdGainValues[1]);
        REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
                      xpdGainValues[2]);

        for (i = 0; i < AR9287_MAX_CHAINS; i++) {
                regChainOffset = i * 0x1000;

                if (pEepData->baseEepHeader.txMask & (1 << i)) {
                        pRawDatasetOpenLoop =
                        (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];

                        if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
                                int8_t txPower;
                                ar9287_eeprom_get_tx_gain_index(ah, chan,
                                                        pRawDatasetOpenLoop,
                                                        pCalBChans, numPiers,
                                                        &txPower);
                                ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
                        } else {
                                pRawDataset =
                                        (struct cal_data_per_freq_ar9287 *)
                                        pEepData->calPierData2G[i];

                                ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
                                                           pRawDataset,
                                                           pCalBChans, numPiers,
                                                           pdGainOverlap_t2,
                                                           gainBoundaries,
                                                           pdadcValues,
                                                           numXpdGain);
                        }

                        ENABLE_REGWRITE_BUFFER(ah);

                        if (i == 0) {
                                if (!ath9k_hw_ar9287_get_eeprom(ah,
                                                        EEP_OL_PWRCTRL)) {

                                        regval = SM(pdGainOverlap_t2,
                                                    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
                                                | SM(gainBoundaries[0],
                                                     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
                                                | SM(gainBoundaries[1],
                                                     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
                                                | SM(gainBoundaries[2],
                                                     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
                                                | SM(gainBoundaries[3],
                                                     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);

                                        REG_WRITE(ah,
                                                  AR_PHY_TPCRG5 + regChainOffset,
                                                  regval);
                                }
                        }

                        if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
                            pEepData->baseEepHeader.pwrTableOffset) {
                                diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
                                             (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
                                diff *= 2;

                                for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
                                        pdadcValues[j] = pdadcValues[j+diff];

                                for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
                                     j < AR5416_NUM_PDADC_VALUES; j++)
                                        pdadcValues[j] =
                                          pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
                        }

                        if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
                                regOffset = AR_PHY_BASE +
                                        (672 << 2) + regChainOffset;

                                for (j = 0; j < 32; j++) {
                                        reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)
                                                | ((pdadcValues[4*j + 1] & 0xFF) << 8)
                                                | ((pdadcValues[4*j + 2] & 0xFF) << 16)
                                                | ((pdadcValues[4*j + 3] & 0xFF) << 24);

                                        REG_WRITE(ah, regOffset, reg32);
                                        regOffset += 4;
                                }
                        }
                        REGWRITE_BUFFER_FLUSH(ah);
                }
        }

        *pTxPowerIndexOffset = 0;
}
static void ath9k_hw_set_ar9287_power_per_rate_table ( struct ath_hw ah,
struct ath9k_channel chan,
int16_t ratesArray,
u16  cfgCtl,
u16  AntennaReduction,
u16  twiceMaxRegulatoryPower,
u16  powerLimit 
) [static]

Definition at line 459 of file ath9k_eeprom_9287.c.

References modal_eep_ar9287_header::antennaGainCh, ar5416_get_ntxchains, AR5416_NUM_BAND_EDGES, AR9287_NUM_2G_20_TARGET_POWERS, AR9287_NUM_2G_40_TARGET_POWERS, AR9287_NUM_2G_CCK_TARGET_POWERS, AR9287_NUM_CTLS, ARRAY_SIZE, ath9k_hw_get_channel_centers(), ath9k_hw_get_legacy_target_powers(), ath9k_hw_get_max_edge_power(), ath9k_hw_get_target_powers(), ath9k_hw_regulatory(), ATH9K_TP_SCALE_MAX, ar9287_eeprom::calTargetPower2G, ar9287_eeprom::calTargetPower2GHT20, ar9287_eeprom::calTargetPower2GHT40, ar9287_eeprom::calTargetPowerCck, CMP_CTL, CMP_NO_CTL, CTL_11A, CTL_11A_EXT, CTL_11B, CTL_11B_EXT, CTL_11G, CTL_11G_EXT, CTL_2GHT20, CTL_2GHT40, CTL_5GHT20, CTL_5GHT40, chan_centers::ctl_center, CTL_MODE_M, ar9287_eeprom::ctlData, cal_ctl_data_ar9287::ctlEdges, ar9287_eeprom::ctlIndex, ath_hw::eeprom, EXT_ADDITIVE, chan_centers::ext_center, IS_CHAN_2GHZ, IS_CHAN_HT40, ath_hw::map9287, max, MAX_RATE_POWER, min, ar9287_eeprom::modalHeader, NULL, rate11l, rate11s, rate12mb, rate18mb, rate1l, rate24mb, rate2l, rate2s, rate36mb, rate48mb, rate54mb, rate5_5l, rate5_5s, rate6mb, rate9mb, rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm, rateHt20_0, rateHt40_0, rateXr, REDUCE_SCALED_POWER_BY_THREE_CHAIN, REDUCE_SCALED_POWER_BY_TWO_CHAIN, SD_NO_CTL, SUB_NUM_CTL_MODES_AT_2G_40, chan_centers::synth_center, ath_regulatory::tp_scale, cal_target_power_leg::tPow2x, cal_target_power_ht::tPow2x, and ath_hw::txchainmask.

Referenced by ath9k_hw_ar9287_set_txpower().

{
#define CMP_CTL \
        (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
         pEepData->ctlIndex[i])

#define CMP_NO_CTL \
        (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
         ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))

#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10

        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
        u16 twiceMaxEdgePower = MAX_RATE_POWER;
        static const u16 tpScaleReductionTable[5] =
                { 0, 3, 6, 9, MAX_RATE_POWER };
        unsigned int i;
        int16_t twiceLargestAntenna;
        struct cal_ctl_data_ar9287 *rep;
        struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
                                    targetPowerCck = {0, {0, 0, 0, 0} };
        struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
                                    targetPowerCckExt = {0, {0, 0, 0, 0} };
        struct cal_target_power_ht targetPowerHt20,
                                    targetPowerHt40 = {0, {0, 0, 0, 0} };
        u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
        static const u16 ctlModesFor11g[] = {
                CTL_11B, CTL_11G, CTL_2GHT20,
                CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
        };
        u16 numCtlModes = 0;
        const u16 *pCtlMode = NULL;
        u16 ctlMode, freq;
        struct chan_centers centers;
        int tx_chainmask;
        u16 twiceMinEdgePower;
        struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
        tx_chainmask = ah->txchainmask;

        ath9k_hw_get_channel_centers(ah, chan, &centers);

        /* Compute TxPower reduction due to Antenna Gain */
        twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
                                  pEepData->modalHeader.antennaGainCh[1]);
        twiceLargestAntenna = (int16_t)min((AntennaReduction) -
                                           twiceLargestAntenna, 0);

        /*
         * scaledPower is the minimum of the user input power level
         * and the regulatory allowed power level.
         */
        maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;

        if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
                maxRegAllowedPower -=
                        (tpScaleReductionTable[(regulatory->tp_scale)] * 2);

        scaledPower = min(powerLimit, maxRegAllowedPower);

        /*
         * Reduce scaled Power by number of chains active
         * to get the per chain tx power level.
         */
        switch (ar5416_get_ntxchains(tx_chainmask)) {
        case 1:
                break;
        case 2:
                if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
                        scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
                else
                        scaledPower = 0;
                break;
        case 3:
                if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
                        scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
                else
                        scaledPower = 0;
                break;
        }
        scaledPower = max((u16)0, scaledPower);

        /*
         * Get TX power from EEPROM.
         */
        if (IS_CHAN_2GHZ(chan)) {
                /* CTL_11B, CTL_11G, CTL_2GHT20 */
                numCtlModes =
                        ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;

                pCtlMode = ctlModesFor11g;

                ath9k_hw_get_legacy_target_powers(ah, chan,
                                                  pEepData->calTargetPowerCck,
                                                  AR9287_NUM_2G_CCK_TARGET_POWERS,
                                                  &targetPowerCck, 4, 0);
                ath9k_hw_get_legacy_target_powers(ah, chan,
                                                  pEepData->calTargetPower2G,
                                                  AR9287_NUM_2G_20_TARGET_POWERS,
                                                  &targetPowerOfdm, 4, 0);
                ath9k_hw_get_target_powers(ah, chan,
                                           pEepData->calTargetPower2GHT20,
                                           AR9287_NUM_2G_20_TARGET_POWERS,
                                           &targetPowerHt20, 8, 0);

                if (IS_CHAN_HT40(chan)) {
                        /* All 2G CTLs */
                        numCtlModes = ARRAY_SIZE(ctlModesFor11g);
                        ath9k_hw_get_target_powers(ah, chan,
                                                   pEepData->calTargetPower2GHT40,
                                                   AR9287_NUM_2G_40_TARGET_POWERS,
                                                   &targetPowerHt40, 8, 1);
                        ath9k_hw_get_legacy_target_powers(ah, chan,
                                                  pEepData->calTargetPowerCck,
                                                  AR9287_NUM_2G_CCK_TARGET_POWERS,
                                                  &targetPowerCckExt, 4, 1);
                        ath9k_hw_get_legacy_target_powers(ah, chan,
                                                  pEepData->calTargetPower2G,
                                                  AR9287_NUM_2G_20_TARGET_POWERS,
                                                  &targetPowerOfdmExt, 4, 1);
                }
        }

        for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
                int isHt40CtlMode =
                        (pCtlMode[ctlMode] == CTL_2GHT40) ? 1 : 0;

                if (isHt40CtlMode)
                        freq = centers.synth_center;
                else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
                        freq = centers.ext_center;
                else
                        freq = centers.ctl_center;

                /* Walk through the CTL indices stored in EEPROM */
                for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
                        struct cal_ctl_edges *pRdEdgesPower;

                        /*
                         * Compare test group from regulatory channel list
                         * with test mode from pCtlMode list
                         */
                        if (CMP_CTL || CMP_NO_CTL) {
                                rep = &(pEepData->ctlData[i]);
                                pRdEdgesPower =
                                rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];

                                twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
                                                                pRdEdgesPower,
                                                                IS_CHAN_2GHZ(chan),
                                                                AR5416_NUM_BAND_EDGES);

                                if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
                                        twiceMaxEdgePower = min(twiceMaxEdgePower,
                                                                twiceMinEdgePower);
                                } else {
                                        twiceMaxEdgePower = twiceMinEdgePower;
                                        break;
                                }
                        }
                }

                minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);

                /* Apply ctl mode to correct target power set */
                switch (pCtlMode[ctlMode]) {
                case CTL_11B:
                        for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
                                targetPowerCck.tPow2x[i] =
                                        (u8)min((u16)targetPowerCck.tPow2x[i],
                                                minCtlPower);
                        }
                        break;
                case CTL_11A:
                case CTL_11G:
                        for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
                                targetPowerOfdm.tPow2x[i] =
                                        (u8)min((u16)targetPowerOfdm.tPow2x[i],
                                                minCtlPower);
                        }
                        break;
                case CTL_5GHT20:
                case CTL_2GHT20:
                        for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
                                targetPowerHt20.tPow2x[i] =
                                        (u8)min((u16)targetPowerHt20.tPow2x[i],
                                                minCtlPower);
                        }
                        break;
                case CTL_11B_EXT:
                        targetPowerCckExt.tPow2x[0] =
                                (u8)min((u16)targetPowerCckExt.tPow2x[0],
                                        minCtlPower);
                        break;
                case CTL_11A_EXT:
                case CTL_11G_EXT:
                        targetPowerOfdmExt.tPow2x[0] =
                                (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
                                        minCtlPower);
                        break;
                case CTL_5GHT40:
                case CTL_2GHT40:
                        for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
                                targetPowerHt40.tPow2x[i] =
                                        (u8)min((u16)targetPowerHt40.tPow2x[i],
                                                minCtlPower);
                        }
                        break;
                default:
                        break;
                }
        }

        /* Now set the rates array */

        ratesArray[rate6mb] =
        ratesArray[rate9mb] =
        ratesArray[rate12mb] =
        ratesArray[rate18mb] =
        ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];

        ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
        ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
        ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
        ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];

        for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
                ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];

        if (IS_CHAN_2GHZ(chan)) {
                ratesArray[rate1l] = targetPowerCck.tPow2x[0];
                ratesArray[rate2s] =
                ratesArray[rate2l] = targetPowerCck.tPow2x[1];
                ratesArray[rate5_5s] =
                ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
                ratesArray[rate11s] =
                ratesArray[rate11l] = targetPowerCck.tPow2x[3];
        }
        if (IS_CHAN_HT40(chan)) {
                for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
                        ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];

                ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
                ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
                ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];

                if (IS_CHAN_2GHZ(chan))
                        ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
        }

#undef CMP_CTL
#undef CMP_NO_CTL
#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
}
static void ath9k_hw_ar9287_set_txpower ( struct ath_hw ah,
struct ath9k_channel chan,
u16  cfgCtl,
u8  twiceAntennaReduction,
u8  twiceMaxRegulatoryPower,
u8  powerLimit,
int  test 
) [static]

Definition at line 721 of file ath9k_eeprom_9287.c.

References Ar5416RateSize, AR9287_EEP_MINOR_VER_2, AR9287_EEP_VER_MINOR_MASK, AR9287_PWR_TABLE_OFFSET_DB, AR_PHY_POWER_TX_RATE1, AR_PHY_POWER_TX_RATE2, AR_PHY_POWER_TX_RATE3, AR_PHY_POWER_TX_RATE4, AR_PHY_POWER_TX_RATE5, AR_PHY_POWER_TX_RATE6, AR_PHY_POWER_TX_RATE7, AR_PHY_POWER_TX_RATE8, AR_PHY_POWER_TX_RATE9, AR_SREV_9280_20_OR_LATER, ARRAY_SIZE, ath9k_hw_ar9287_get_eeprom(), ath9k_hw_regulatory(), ath9k_hw_set_ar9287_power_cal_table(), ath9k_hw_set_ar9287_power_per_rate_table(), ATH9K_POW_SM, ar9287_eeprom::baseEepHeader, EEP_OL_PWRCTRL, ath_hw::eeprom, ENABLE_REGWRITE_BUFFER, modal_eep_ar9287_header::ht40PowerIncForPdadc, IS_CHAN_2GHZ, IS_CHAN_HT40, ath_hw::map9287, ath_regulatory::max_power_level, MAX_RATE_POWER, memset(), ar9287_eeprom::modalHeader, rate11l, rate11s, rate12mb, rate18mb, rate1l, rate24mb, rate2l, rate2s, rate36mb, rate48mb, rate54mb, rate5_5l, rate5_5s, rate6mb, rate9mb, rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm, rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3, rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7, rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3, rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7, rateXr, REG_WRITE, REGWRITE_BUFFER_FLUSH, and base_eep_ar9287_header::version.

{
        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
        struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
        struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
        int16_t ratesArray[Ar5416RateSize];
        int16_t txPowerIndexOffset = 0;
        u8 ht40PowerIncForPdadc = 2;
        unsigned int i;

        memset(ratesArray, 0, sizeof(ratesArray));

        if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
            AR9287_EEP_MINOR_VER_2)
                ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;

        ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
                                                 &ratesArray[0], cfgCtl,
                                                 twiceAntennaReduction,
                                                 twiceMaxRegulatoryPower,
                                                 powerLimit);

        ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);

        regulatory->max_power_level = 0;
        for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
                ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
                if (ratesArray[i] > MAX_RATE_POWER)
                        ratesArray[i] = MAX_RATE_POWER;

                if (ratesArray[i] > regulatory->max_power_level)
                        regulatory->max_power_level = ratesArray[i];
        }

        if (test)
                return;

        if (IS_CHAN_2GHZ(chan))
                i = rate1l;
        else
                i = rate6mb;

        regulatory->max_power_level = ratesArray[i];

        if (AR_SREV_9280_20_OR_LATER(ah)) {
                for (i = 0; i < Ar5416RateSize; i++)
                        ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
        }

        ENABLE_REGWRITE_BUFFER(ah);

        /* OFDM power per rate */
        REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
                  ATH9K_POW_SM(ratesArray[rate18mb], 24)
                  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
                  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
                  | ATH9K_POW_SM(ratesArray[rate6mb], 0));

        REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
                  ATH9K_POW_SM(ratesArray[rate54mb], 24)
                  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
                  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
                  | ATH9K_POW_SM(ratesArray[rate24mb], 0));

        /* CCK power per rate */
        if (IS_CHAN_2GHZ(chan)) {
                REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
                          ATH9K_POW_SM(ratesArray[rate2s], 24)
                          | ATH9K_POW_SM(ratesArray[rate2l], 16)
                          | ATH9K_POW_SM(ratesArray[rateXr], 8)
                          | ATH9K_POW_SM(ratesArray[rate1l], 0));
                REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
                          ATH9K_POW_SM(ratesArray[rate11s], 24)
                          | ATH9K_POW_SM(ratesArray[rate11l], 16)
                          | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
                          | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
        }

        /* HT20 power per rate */
        REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
                  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
                  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
                  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
                  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));

        REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
                  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
                  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
                  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
                  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));

        /* HT40 power per rate */
        if (IS_CHAN_HT40(chan)) {
                if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
                                  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));

                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
                                  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
                } else {
                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
                                  ATH9K_POW_SM(ratesArray[rateHt40_3] +
                                               ht40PowerIncForPdadc, 24)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
                                                 ht40PowerIncForPdadc, 16)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
                                                 ht40PowerIncForPdadc, 8)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
                                                 ht40PowerIncForPdadc, 0));

                        REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
                                  ATH9K_POW_SM(ratesArray[rateHt40_7] +
                                               ht40PowerIncForPdadc, 24)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
                                                 ht40PowerIncForPdadc, 16)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
                                                 ht40PowerIncForPdadc, 8)
                                  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
                                                 ht40PowerIncForPdadc, 0));
                }

                /* Dup/Ext power per rate */
                REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
                          ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
                          | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
                          | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
                          | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
        }
        REGWRITE_BUFFER_FLUSH(ah);
}
static void ath9k_hw_ar9287_set_addac ( struct ath_hw *ah  __unused,
struct ath9k_channel *chan  __unused 
) [static]

Definition at line 862 of file ath9k_eeprom_9287.c.

{
}
static void ath9k_hw_ar9287_set_board_values ( struct ath_hw ah,
struct ath9k_channel chan 
) [static]

Definition at line 867 of file ath9k_eeprom_9287.c.

References modal_eep_ar9287_header::adcDesiredSize, modal_eep_ar9287_header::antCtrlChain, modal_eep_ar9287_header::antCtrlCommon, AR9280_PHY_CCA_THRESH62, AR9280_PHY_RXGAIN_TXRX_ATTEN, AR9280_PHY_RXGAIN_TXRX_MARGIN, AR9287_AN_RF2G3_CH0, AR9287_AN_RF2G3_CH1, AR9287_AN_RF2G3_DB1, AR9287_AN_RF2G3_DB2, AR9287_AN_RF2G3_OB_CCK, AR9287_AN_RF2G3_OB_PAL_OFF, AR9287_AN_RF2G3_OB_PSK, AR9287_AN_RF2G3_OB_QAM, AR9287_AN_TOP2, AR9287_AN_TOP2_XPABIAS_LVL, AR9287_AN_TOP2_XPABIAS_LVL_S, AR9287_MAX_CHAINS, AR_PHY_CCA, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_DB, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, AR_PHY_RF_CTL2, AR_PHY_RF_CTL3, AR_PHY_RF_CTL4, AR_PHY_RF_CTL4_FRAME_XPAA_ON, AR_PHY_RF_CTL4_FRAME_XPAB_ON, AR_PHY_RF_CTL4_TX_END_XPAA_OFF, AR_PHY_RF_CTL4_TX_END_XPAB_OFF, AR_PHY_RXGAIN, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, AR_PHY_SWITCH_CHAIN_0, AR_PHY_SWITCH_COM, AR_PHY_TIMING_CTRL4, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, AR_PHY_TX_END_DATA_START, AR_PHY_TX_END_PA_ON, AR_PHY_TX_END_TO_A2_RX_ON, ath9k_hw_analog_shift_regwrite(), ath9k_hw_analog_shift_rmw(), modal_eep_ar9287_header::bswAtten, modal_eep_ar9287_header::bswMargin, modal_eep_ar9287_header::db1, modal_eep_ar9287_header::db2, ath_hw::eeprom, modal_eep_ar9287_header::iqCalICh, modal_eep_ar9287_header::iqCalQCh, IS_CHAN_HT40, ath_hw::map9287, ar9287_eeprom::modalHeader, modal_eep_ar9287_header::ob_cck, modal_eep_ar9287_header::ob_pal_off, modal_eep_ar9287_header::ob_psk, modal_eep_ar9287_header::ob_qam, REG_READ, REG_RMW_FIELD, REG_WRITE, modal_eep_ar9287_header::rxTxMarginCh, SM, modal_eep_ar9287_header::switchSettling, modal_eep_ar9287_header::swSettleHt40, modal_eep_ar9287_header::thresh62, modal_eep_ar9287_header::txEndToRxOn, modal_eep_ar9287_header::txEndToXpaOff, modal_eep_ar9287_header::txFrameToDataStart, modal_eep_ar9287_header::txFrameToPaOn, modal_eep_ar9287_header::txFrameToXpaOn, modal_eep_ar9287_header::txRxAttenCh, and modal_eep_ar9287_header::xpaBiasLvl.

{
        struct ar9287_eeprom *eep = &ah->eeprom.map9287;
        struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
        u32 regChainOffset, regval;
        u8 txRxAttenLocal;
        int i;

        pModal = &eep->modalHeader;

        REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);

        for (i = 0; i < AR9287_MAX_CHAINS; i++) {
                regChainOffset = i * 0x1000;

                REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
                          pModal->antCtrlChain[i]);

                REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
                          (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
                           & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
                               AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
                          SM(pModal->iqCalICh[i],
                             AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
                          SM(pModal->iqCalQCh[i],
                             AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));

                txRxAttenLocal = pModal->txRxAttenCh[i];

                REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
                              AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
                              pModal->bswMargin[i]);
                REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
                              AR_PHY_GAIN_2GHZ_XATTEN1_DB,
                              pModal->bswAtten[i]);
                REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
                              AR9280_PHY_RXGAIN_TXRX_ATTEN,
                              txRxAttenLocal);
                REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
                              AR9280_PHY_RXGAIN_TXRX_MARGIN,
                              pModal->rxTxMarginCh[i]);
        }


        if (IS_CHAN_HT40(chan))
                REG_RMW_FIELD(ah, AR_PHY_SETTLING,
                              AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
        else
                REG_RMW_FIELD(ah, AR_PHY_SETTLING,
                              AR_PHY_SETTLING_SWITCH, pModal->switchSettling);

        REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
                      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);

        REG_WRITE(ah, AR_PHY_RF_CTL4,
                  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
                  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
                  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
                  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));

        REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
                      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);

        REG_RMW_FIELD(ah, AR_PHY_CCA,
                      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
        REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
                      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);

        regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
        regval &= ~(AR9287_AN_RF2G3_DB1 |
                    AR9287_AN_RF2G3_DB2 |
                    AR9287_AN_RF2G3_OB_CCK |
                    AR9287_AN_RF2G3_OB_PSK |
                    AR9287_AN_RF2G3_OB_QAM |
                    AR9287_AN_RF2G3_OB_PAL_OFF);
        regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
                   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
                   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
                   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
                   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
                   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));

        ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);

        regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
        regval &= ~(AR9287_AN_RF2G3_DB1 |
                    AR9287_AN_RF2G3_DB2 |
                    AR9287_AN_RF2G3_OB_CCK |
                    AR9287_AN_RF2G3_OB_PSK |
                    AR9287_AN_RF2G3_OB_QAM |
                    AR9287_AN_RF2G3_OB_PAL_OFF);
        regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
                   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
                   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
                   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
                   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
                   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));

        ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);

        REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
                      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
        REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
                      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);

        ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
                                  AR9287_AN_TOP2_XPABIAS_LVL,
                                  AR9287_AN_TOP2_XPABIAS_LVL_S,
                                  pModal->xpaBiasLvl);
}
static u16 ath9k_hw_ar9287_get_spur_channel ( struct ath_hw ah,
u16  i,
int  is2GHz 
) [static]

Definition at line 979 of file ath9k_eeprom_9287.c.

References AR_NO_SPUR, ath_hw::config, DBG2, EEP_MAP9287_SPURCHAN, SPUR_DISABLE, SPUR_ENABLE_EEPROM, SPUR_ENABLE_IOCTL, ath9k_ops_config::spurchans, and ath9k_ops_config::spurmode.

{
#define EEP_MAP9287_SPURCHAN \
        (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)

        u16 spur_val = AR_NO_SPUR;

        DBG2("ath9k: "
                "Getting spur idx:%d is2Ghz:%d val:%x\n",
                i, is2GHz, ah->config.spurchans[i][is2GHz]);

        switch (ah->config.spurmode) {
        case SPUR_DISABLE:
                break;
        case SPUR_ENABLE_IOCTL:
                spur_val = ah->config.spurchans[i][is2GHz];
                DBG2("ath9k: "
                        "Getting spur val from new loc. %d\n", spur_val);
                break;
        case SPUR_ENABLE_EEPROM:
                spur_val = EEP_MAP9287_SPURCHAN;
                break;
        }

        return spur_val;

#undef EEP_MAP9287_SPURCHAN
}

Variable Documentation

Initial value:

Definition at line 1009 of file ath9k_eeprom_9287.c.

Referenced by ath9k_hw_eeprom_init().